Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5295, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906876

RESUMO

The Living Planet Index (LPI) measures the average change in population size of vertebrate species over recent decades and has been repeatedly used to assess the changing state of nature. The LPI indicates that vertebrate populations have decreased by almost 70% over the last 50 years. This is in striking contrast with current studies based on the same population time series data that show that increasing and decreasing populations are balanced on average. Here, we examine the methodological pipeline of calculating the LPI to search for the source of this discrepancy. We find that the calculation of the LPI is biased by several mathematical issues which impose an imbalance between detected increasing and decreasing trends and overestimate population declines. Rather than indicating that vertebrate populations do not substantially change, our findings imply that we need better measures for providing a balanced picture of current biodiversity changes. We also show some modifications to improve the reliability of the LPI.


Assuntos
Biodiversidade , Dinâmica Populacional , Vertebrados , Animais , Densidade Demográfica , Viés , Planeta Terra , Ecossistema
2.
Sci Adv ; 10(22): eado6611, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820152

RESUMO

Northern glacial refugia are a hotly debated concept. The idea that many temperate organisms survived the Last Glacial Maximum (LGM; ~26.5 to 19 thousand years) in several sites across central and northern Europe stems from phylogeographic analyses, yet direct fossil evidence has thus far been missing. Here, we present the first unequivocal proof that thermophilous trees such as oak (Quercus), linden (Tilia), and common ash (Fraxinus excelsior) survived the LGM in Central Europe. The persistence of the refugium was promoted by a steady influx of hydrothermal waters that locally maintained a humid and warm microclimate. We reconstructed the geological and palaeohydrological factors responsible for the emergence of hot springs during the LGM and argue that refugia of this type, allowing the long-term survival and rapid post-LGM dispersal of temperate elements, were not exceptional in the European periglacial zone.


Assuntos
Fontes Termais , Refúgio de Vida Selvagem , Árvores , Europa (Continente) , Árvores/genética , Filogeografia , Clima Desértico , Camada de Gelo , Fósseis , Quercus/genética
3.
Ecol Evol ; 14(4): e11167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623521

RESUMO

The savanna ecosystem is dominated by grasses, which are a key food source for many species of grazing animals. This relationship creates a diverse mosaic of habitats and contributes to the high grass species richness of savannas. However, how grazing interacts with environmental conditions in determining grass species richness and abundance in savannas is still insufficiently understood. In the Kruger National Park, South Africa, we recorded grass species and estimated their covers in 60 plots 50 × 50 m in size, accounting for varying proximity to water and different bedrocks. To achieve this, we located plots (i) near perennial rivers, near seasonal rivers, and on crests that are distant from all water sources and (ii) on nutrient-rich basaltic and nutrient-poor granitic bedrock. The presence and abundance of large herbivores were recorded by 60 camera traps located in the same plots. Grass cover was higher at crests and seasonal rivers than at perennial rivers and on basalts than on granites. The relationship between grass species richness and herbivore abundance or species richness was positive at crests, while that between grass species richness and herbivore species richness was negative at seasonal rivers. We found no support for controlling the dominance of grasses by herbivores in crests, but herbivore-induced microsite heterogeneity may account for high grass species richness there. In contrast, the decrease in grass species richness with herbivore species richness at seasonal rivers indicates that the strong grazing pressure over-rides the resistance of some species to grazing and trampling. We suggest that the relationships between grasses and herbivores may work in both directions, but the relationship is habitat-dependent, so that in less productive environments, the effect of herbivores on vegetation prevails, while in more productive environments along rivers the effect of vegetation and water supply on herbivores is more important.

4.
Nat Commun ; 14(1): 5559, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689787

RESUMO

Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.


Assuntos
Análise de Dados , Dissidências e Disputas , Animais , Especiação Genética , Extremidade Superior , Mamíferos/genética
5.
Sci Adv ; 8(43): eadd9620, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306361

RESUMO

Biodiversity on Earth is shaped by abiotic perturbations and rapid diversifications. At the same time, there are arguments that biodiversity is bounded and regulated via biotic interactions. Evaluating the role and relative strength of diversity regulation is crucial for interpreting the ongoing biodiversity changes. We have analyzed Phanerozoic fossil record using public databases and new approaches for identifying the causal dependence of origination and extinction rates on environmental variables and standing diversity. While the effect of environmental factors on origination and extinction rates is variable and taxon specific, the diversity dependence of the rates is almost universal across the studied taxa. Origination rates are dependent on instantaneous diversity levels, while extinction rates reveal delayed diversity dependence. Although precise mechanisms of diversity dependence may be complex and difficult to recover, global regulation of diversity via negative diversity dependence of lineage diversification seems to be a common feature of the biosphere, with profound consequences for understanding current biodiversity crisis.

6.
Insects ; 13(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36135479

RESUMO

Environmental productivity, i.e., the amount of biomass produced by primary producers, belongs among the key factors for the biodiversity patterns. Although the relationship of diversity to environmental productivity differs among studied taxa, detailed data are largely missing for most groups, including insects. Here, we present a study of moth diversity patterns at local and regional scales along a continent-wide gradient of environmental productivity in southern African savannah ecosystems. We sampled diversity of moths (Lepidoptera: Heterocera) at 120 local plots along a gradient of normalized difference vegetation index (NDVI) from the Namib Desert to woodland savannahs along the Zambezi River. By standardized light trapping, we collected 12,372 specimens belonging to 487 moth species. The relationship between species richness for most analyzed moth groups and environmental productivity was significantly positively linear at the local and regional scales. The absence of a significant relationship of most moth groups' abundance to environmental productivity did not support the role of the number of individuals in the diversity-productivity relationship for south African moths. We hypothesize the effects of water availability, habitat complexity, and plant diversity drive the observed moth diversity patterns.

7.
Phys Rev E ; 105(4-1): 044309, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590645

RESUMO

Symmetry breaking ubiquitously occurs across complex systems, from phase transition in statistical physics to self-organized lane formation in pedestrian dynamics. Here, we uncover spontaneous symmetry breaking in a simple model of ride-sharing adoption. We analyze how collective interactions among ride-sharing users to avoid detours in shared rides give rise to spontaneous symmetry breaking and pattern formation in the adoption dynamics. These dynamics result in bistability of high homogeneous and partial heterogeneous adoption states, potentially limiting the population-wide adoption of ride sharing. Our results provide a framework to understand real-world adoption patterns of ride sharing in complex urban settings and support the (re)design of ride-sharing services and incentives for sustainable shared mobility.

8.
Sci Rep ; 12(1): 338, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013353

RESUMO

To identify factors that drive plant species richness in South-African savanna and explore their relative importance, we sampled plant communities across habitats differing in water availability, disturbance, and bedrock, using the Kruger National Park as a model system. We made plant inventories in 60 plots of 50 × 50 m, located in three distinct habitats: (i) at perennial rivers, (ii) at seasonal rivers with water available only during the rainy season, and (iii) on crests, at least ~ 5 km away from any water source. We predicted that large herbivores would utilise seasonal rivers' habitats less intensely than those along perennial rivers where water is available throughout the year, including dry periods. Plots on granite harboured more herbaceous and shrub species than plots on basalt. The dry crests were poorer in herb species than both seasonal and perennial rivers. Seasonal rivers harboured the highest numbers of shrub species, in accordance with the prediction of the highest species richness at relatively low levels of disturbance and low stress from the lack of water. The crests, exposed to relatively low pressure from grazing but stressed by the lack of water, are important from the conservation perspective because they harbour typical, sometimes rare savanna species, and so are seasonal rivers whose shrub richness is stimulated and maintained by the combination of moderate disturbance imposed by herbivores and position in the middle of the water availability gradient. To capture the complexity of determinants of species richness in KNP, we complemented the analysis of the above local factors by exploring large-scale factors related to climate, vegetation productivity, the character of dominant vegetation, and landscape features. The strongest factor was temperature; areas with the highest temperatures reveal lower species richness. Our results also suggest that Colophospermum mopane, a dominant woody species in the north of KNP is not the ultimate cause of the lower plant diversity in this part of the park.

9.
Biodivers Data J ; 10: e89729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761554

RESUMO

Background: Thanks to the high diversity of ecosystems and habitats, South Africa harbours tremendous diversity of insects. The Kruger National Park, due to its position close to the border between two biogeographic regions and high heterogeneity of environmental conditions, represents an insufficiently studied hotspot of lepidopteran diversity. During our ecological research in the Kruger National Park, we collected abundant moth material, including several interesting faunistic records reported in this study. New information: We reported 13 species of moths which had not yet been recorded in South Africa. In many cases, our records represented an important extension of the species' known distribution, including two species (Ozarbagaedei and O.persinua) whose distribution ranges extended into the Zambezian biogeographic region. Such findings confirmed the poor regional knowledge of lepidopteran diversity.

10.
Nat Comput Sci ; 2(10): 655-664, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38177262

RESUMO

Cycling is crucial for sustainable urban transportation. Promoting cycling critically relies on sufficiently developed infrastructure; however, designing efficient bike path networks constitutes a complex problem that requires balancing multiple constraints. Here we propose a framework for generating efficient bike path networks, explicitly taking into account cyclists' demand distribution and route choices based on safety preferences. By reversing the network formation, we iteratively remove bike paths from an initially complete bike path network and continually update cyclists' route choices to create a sequence of networks adapted to the cycling demand. We illustrate the applicability of this demand-driven approach for two cities. A comparison of the resulting bike path networks with those created for homogenized demand enables us to quantify the importance of the demand distribution for network planning. The proposed framework may thus enable quantitative evaluation of the structure of current and planned cycling networks, and support the demand-driven design of efficient infrastructures.


Assuntos
Ciclismo , Meios de Transporte , Cidades , Meios de Transporte/métodos
11.
Nat Commun ; 12(1): 3003, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075046

RESUMO

Ride-sharing-the combination of multiple trips into one-may substantially contribute towards sustainable urban mobility. It is most efficient at high demand locations with many similar trip requests. However, here we reveal that people's willingness to share rides does not follow this trend. Modeling the fundamental incentives underlying individual ride-sharing decisions, we find two opposing adoption regimes, one with constant and another one with decreasing adoption as demand increases. In the high demand limit, the transition between these regimes becomes discontinuous, switching abruptly from low to high ride-sharing adoption. Analyzing over 360 million ride requests in New York City and Chicago illustrates that both regimes coexist across the cities, consistent with our model predictions. These results suggest that even a moderate increase in the financial incentives may have a disproportionately large effect on the ride-sharing adoption of individual user groups.

12.
Nat Commun ; 11(1): 4831, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973169

RESUMO

Dynamic pricing schemes are increasingly employed across industries to maintain a self-organized balance of demand and supply. However, throughout complex dynamical systems, unintended collective states exist that may compromise their function. Here we reveal how dynamic pricing may induce demand-supply imbalances instead of preventing them. Combining game theory and time series analysis of dynamic pricing data from on-demand ride-hailing services, we explain this apparent contradiction. We derive a phase diagram demonstrating how and under which conditions dynamic pricing incentivizes collective action of ride-hailing drivers to induce anomalous supply shortages. We identify characteristic patterns in the price dynamics reflecting these supply anomalies by disentangling different timescales in price time series of ride-hailing services at 137 locations across the globe. Our results provide systemic insights for the regulation of dynamic pricing, in particular in publicly accessible mobility systems, by unraveling under which conditions dynamic pricing schemes promote anomalous supply shortages.

13.
Nat Commun ; 10(1): 5142, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723140

RESUMO

The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa.


Assuntos
Clima , Fungos/fisiologia , Internacionalidade , Biodiversidade , Filogeografia , Chuva , Especificidade da Espécie , Temperatura
14.
Am Nat ; 194(5): E122-E133, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31613672

RESUMO

The latitudinal diversity gradient (LDG) is one of Earth's most iconic biodiversity patterns and still one of the most debated. Explanations for the LDG are often categorized into three broad pathways in which the diversity gradient is created by (1) differential diversification rates, (2) differential carrying capacities (ecological limits), or (3) differential time to accumulate species across latitude. Support for these pathways has, however, been mostly verbally expressed. Here, we present a minimal model to clarify the essential assumptions of the three pathways and explore the sensitivity of diversity dynamics to these pathways. We find that an LDG arises most easily from a gradient in ecological limits compared with a gradient in the time for species accumulation or diversification rate in most modeled scenarios. Differential diversification rates create a stronger LDG than ecological limits only when speciation and dispersal rates are low, but then the predicted LDG seems weaker than the observed LDG. Moreover, range dynamics may reduce an LDG created by a gradient in diversification rates or time for species accumulation, but they cannot reduce an LDG induced by differential ecological limits. We conclude that our simple model provides a null prediction for the effectiveness of the three LDG pathways and can thus aid discussions about the causal mechanisms underlying the LDG or motivate more complex models to confirm or falsify our findings.


Assuntos
Biodiversidade , Clima , Animais , Ecossistema , Extinção Biológica , Especiação Genética , Modelos Teóricos
15.
Proc Natl Acad Sci U S A ; 116(43): 21616-21622, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591216

RESUMO

Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.


Assuntos
Tamanho Corporal/fisiologia , Eucariotos/fisiologia , Modelos Biológicos , Animais , Metabolismo Energético/fisiologia , Crescimento e Desenvolvimento/fisiologia , Mortalidade , Densidade Demográfica
16.
Trends Ecol Evol ; 34(3): 211-223, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30591209

RESUMO

The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, yet no consensus has been reached about its underlying causes. We argue that the reasons for this are the verbal nature of existing hypotheses, the failure to mechanistically link interacting ecological and evolutionary processes to the LDG, and the fact that empirical patterns are often consistent with multiple explanations. To address this issue, we synthesize current LDG hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to assess the relative importance of different processes for generating the LDG.


Assuntos
Biodiversidade , Evolução Biológica , Ecologia , Modelos Biológicos , Distribuição Animal , Geografia , Características de História de Vida , Filogenia , Dispersão Vegetal
17.
Trends Ecol Evol ; 33(10): 731-744, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30209011

RESUMO

Macroecology is the study of the mechanisms underlying general patterns of ecology across scales. Research in microbial ecology and macroecology have long been detached. Here, we argue that it is time to bridge the gap, as they share a common currency of species and individuals, and a common goal of understanding the causes and consequences of changes in biodiversity. Microbial ecology and macroecology will mutually benefit from a unified research agenda and shared datasets that span the entirety of the biodiversity of life and the geographic expanse of the Earth.


Assuntos
Biodiversidade , Ecologia/métodos , Ecologia/classificação
18.
Zookeys ; (770): 227-246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002596

RESUMO

Quantitative data on local variation in patterns of occurrence of common carnivore species, such as the red fox, European badger, or martens in central Europe are largely missing. We conducted a study focusing on carnivore ecology and distribution in a cultural landscape with the use of modern technology. We placed 73 automated infra-red camera traps into four different habitats differing in water availability and canopy cover (mixed forest, wetland, shrubby grassland and floodplain forest) in the Polabí region near Prague, Czech Republic. Each habitat was represented by three or four spatially isolated sites within which the camera traps were distributed. During the year of the study, we recorded nine carnivore species, including the non-native golden jackal. Habitats with the highest numbers of records pooled across all species were wetland (1279) and shrubby grassland (1014); fewer records were made in mixed (876) and floodplain forest (734). Habitat had a significant effect on the number of records of badger and marten, and a marginally significant effect on fox. In terms of seasonal dynamics, there were significant differences in the distribution of records among seasons in fox, marginally significant in least weasel, and the occurrence among seasons did not differ for badger and marten. In the summer, fox and marten were more active than expected by chance during the day, while the pattern was opposite in winter when they were more active during the night. Our findings on habitat preferences and circadian and seasonal activity provided the first quantitative data on patterns whose existence was assumed on the basis of conventional wisdom. Our study demonstrates the potential of a long-term monitoring approach based on infra-red camera traps. Generally, the rather frequent occurrence of recorded species indicates that most carnivore species are thriving in current central-European landscapes characterized by human-driven disturbances and urbanization.

19.
Ecol Lett ; 21(6): 920-937, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29659144

RESUMO

Species richness increases with energy availability, yet there is little consensus as to the exact processes driving this species-energy relationship. The most straightforward explanation is the more-individuals hypothesis (MIH). It states that higher energy availability promotes a higher total number of individuals in a community, which consequently increases species richness by allowing for a greater number of species with viable populations. Empirical support for the MIH is mixed, partially due to the lack of proper formalisation of the MIH and consequent confusion as to its exact predictions. Here, we review the evidence of the MIH and evaluate the reliability of various predictions that have been tested. There is only limited evidence that spatial variation in species richness is driven by variation in the total number of individuals. There are also problems with measures of energy availability, with scale-dependence, and with the direction of causality, as the total number of individuals may sometimes itself be driven by the number of species. However, even in such a case the total number of individuals may be involved in diversity regulation. We propose a formal theory that encompasses these processes, clarifying how the different factors affecting diversity dynamics can be disentangled.


Assuntos
Biodiversidade , Dinâmica Populacional , Reprodutibilidade dos Testes
20.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386368

RESUMO

Human populations tend to grow steadily, because of the ability of people to make innovations, and thus overcome and extend the limits imposed by natural resources. It is therefore questionable whether traditional concepts of population ecology, including environmental carrying capacity, can be applied to human societies. The existence of carrying capacity cannot be simply inferred from population time-series, but it can be indicated by the tendency of populations to return to a previous state after a disturbance. So far only indirect evidence at a coarse-grained scale has indicated the historical existence of human carrying capacity. We analysed unique historical population data on 88 settlements before and after the Thirty Years War (1618-1648), one the longest and most destructive conflicts in European history, which reduced the population of Central Europe by 30-50%. The recovery rate of individual settlements after the war was positively correlated with the extent of the disturbance, so that the population size of the settlements after a period of regeneration was similar to the pre-war situation, indicating an equilibrium population size (i.e. carrying capacity). The carrying capacity of individual settlements was positively determined mostly by the fertility of the soil and the area of the cadastre, and negatively by the number of other settlements in the surroundings. Pre-industrial human population sizes were thus probably controlled by negative density dependence mediated by soil fertility, which could not increase due to limited agricultural technologies.


Assuntos
Conservação dos Recursos Naturais , Dinâmica Populacional , População Rural/estatística & dados numéricos , Agricultura/instrumentação , República Tcheca , História do Século XVII , História do Século XVIII , Humanos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...