RESUMO
Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.
Assuntos
Mania , Peixe-Zebra , Animais , Humanos , Comportamento Animal , Encéfalo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Estresse Oxidativo , FenótipoRESUMO
We assessed the effects of curcumin, rutin, and the association of rutin and curcumin in organs of hyperlipidemic rats. Rutin and curcumin have notable antioxidant and anti-inflammatory actions, so we hypothesized that their association would enhance their beneficial effects. Hyperlipidemia results in lipotoxicity and affects several organs. Lipotoxicity is not only an outcome of lipid accumulation in non-adipose tissues but also a result of the hyperlipidemia-associated inflammation and oxidative stress. Wistar rats were treated with rutin and curcumin for 30 days before the induction of acute hyperlipidemia by Poloxamer-407. After 36 h, the animals were euthanized for collection of blood and organs. Untreated hyperlipidemic rats showed higher uric acid and albumin levels in the serum and increased spleen size and ADA activity. Rutin, curcumin and the association reduced the spleen size by 20% and ADA activity by 23, 28, and 27%, respectively. Rats pretreated with rutin showed reduced lipid damage in the liver (40%) and the kidney (44%), and the protein damage was also reduced in the liver (75%). The lipid damage was decreased by 40% in the liver, and 56% in the kidney of rats pretreated with curcumin. The association reduced lipid damage by 50% and 36%, and protein damage by 77% and 64% in the liver and kidney, respectively. Rutin better prevented the decrease in the antioxidant defenses, increasing SOD by 34%, CAT by 246% and GST by 84% in the liver, as well as SOD by 119% and GST by 190% in the kidney. Also, analyses of blood and spleen parameters of untreated and pretreated non-hyperlipidemic rats showed no signs of immunotoxicity. Despite showing protective effects, the association did not perform better than the isolated compounds. Here, we showed that rutin and/or curcumin reestablished the immune homeostasis and redox balance disrupted by hyperlipidemia in peripheral organs of rats.