Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37094998

RESUMO

BACKGROUND AND OBJECTIVES: The B cell-depleting anti-CD20 antibody ocrelizumab (OCR) effectively reduces MS disease activity and slows disability progression. Given the role of B cells as antigen-presenting cells, the primary goal of this study was to evaluate the effect of OCR on the T-cell receptor repertoire diversity. METHODS: To examine whether OCR substantially alters the molecular diversity of the T-cell receptor repertoire, deep immune repertoire sequencing (RepSeq) of CD4+ and CD8+ T-cell receptor ß-chain variable regions was performed on longitudinal blood samples. The IgM and IgG heavy chain variable region repertoire was also analyzed to characterize the residual B-cell repertoire under OCR treatment. RESULTS: Peripheral blood samples for RepSeq were obtained from 8 patients with relapsing MS enrolled in the OPERA I trial over a period of up to 39 months. Four patients each were treated with OCR or interferon ß1-a during the double-blind period of OPERA I. All patients received OCR during the open-label extension. The diversity of the CD4+/CD8+ T-cell repertoires remained unaffected in OCR-treated patients. The expected OCR-associated B-cell depletion was mirrored by reduced B-cell receptor diversity in peripheral blood and a shift in immunoglobulin gene usage. Despite deep B-cell depletion, longitudinal persistence of clonally related B-cells was observed. DISCUSSION: Our data illustrate that the diversity of CD4+/CD8+ T-cell receptor repertoires remained unaltered in OCR-treated patients with relapsing MS. Persistence of a highly diverse T-cell repertoire suggests that aspects of adaptive immunity remain intact despite extended anti-CD20 therapy. TRIAL REGISTRATION INFORMATION: This is a substudy (BE29353) of the OPERA I (WA21092; NCT01247324) trial. Date of registration, November 23, 2010; first patient enrollment, August 31, 2011.


Assuntos
Esclerose Múltipla , Humanos , Fatores Imunológicos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Recidiva , Receptores de Antígenos de Linfócitos T
2.
Sci Signal ; 10(495)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874603

RESUMO

The intracellular pH (pHi) of most cancers is constitutively higher than that of normal cells and enhances proliferation and cell survival. We found that increased pHi enabled the tumorigenic behaviors caused by somatic arginine-to-histidine mutations, which are frequent in cancer and confer pH sensing not seen with wild-type proteins. Experimentally raising the pHi increased the activity of R776H mutant epidermal growth factor receptor (EGFR-R776H), thereby increasing proliferation and causing transformation in fibroblasts. An Arg-to-Gly mutation did not confer these effects. Molecular dynamics simulations of EGFR suggested that decreased protonation of His776 at high pH causes conformational changes in the αC helix that may stabilize the active form of the kinase. An Arg-to-His, but not Arg-to-Lys, mutation in the transcription factor p53 (p53-R273H) decreased its transcriptional activity and attenuated the DNA damage response in fibroblasts and breast cancer cells with high pHi. Lowering pHi attenuated the tumorigenic effects of both EGFR-R776H and p53-R273H. Our data suggest that some somatic mutations may confer a fitness advantage to the higher pHi of cancer cells.


Assuntos
Arginina/genética , Neoplasias da Mama/patologia , Receptores ErbB/genética , Histidina/genética , Mutação , Proteína Supressora de Tumor p53/genética , Arginina/química , Arginina/metabolismo , Neoplasias da Mama/genética , Carcinogênese , Proliferação de Células , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Histidina/química , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
3.
PLoS One ; 12(8): e0183273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837668

RESUMO

Cancer can be viewed as a set of different diseases with distinctions based on tissue origin, driver mutations, and genetic signatures. Accordingly, each of these distinctions have been used to classify cancer subtypes and to reveal common features. Here, we present a different analysis of cancer based on amino acid mutation signatures. Non-negative Matrix Factorization and principal component analysis of 29 cancers revealed six amino acid mutation signatures, including four signatures that were dominated by either arginine to histidine (Arg>His) or glutamate to lysine (Glu>Lys) mutations. Sample-level analyses reveal that while some cancers are heterogeneous, others are largely dominated by one type of mutation. Using a non-overlapping set of samples from the COSMIC somatic mutation database, we validate five of six mutation signatures, including signatures with prominent arginine to histidine (Arg>His) or glutamate to lysine (Glu>Lys) mutations. This suggests that our classification of cancers based on amino acid mutation patterns may provide avenues of inquiry pertaining to specific protein mutations that may generate novel insights into cancer biology.


Assuntos
Aminoácidos/genética , Mutação , Neoplasias/genética , Humanos , Análise de Componente Principal
4.
Cell ; 167(7): 1762-1773.e12, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984726

RESUMO

Overlapping genes pose an evolutionary dilemma as one DNA sequence evolves under the selection pressures of multiple proteins. Here, we perform systematic statistical and mutational analyses of the overlapping HIV-1 genes tat and rev and engineer exhaustive libraries of non-overlapped viruses to perform deep mutational scanning of each gene independently. We find a "segregated" organization in which overlapped sites encode functional residues of one gene or the other, but never both. Furthermore, this organization eliminates unfit genotypes, providing a fitness advantage to the population. Our comprehensive analysis reveals the extraordinary manner in which HIV minimizes the constraint of overlapping genes and repurposes that constraint to its own advantage. Thus, overlaps are not just consequences of evolutionary constraints, but rather can provide population fitness advantages.


Assuntos
Evolução Biológica , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Entropia , Aptidão Genética , Infecções por HIV/virologia , Humanos , Mutação , Fases de Leitura Aberta , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética
5.
Genome Med ; 8(1): 60, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27255379

RESUMO

BACKGROUND: Vaccines dramatically affect an individual's adaptive immune system and thus provide an excellent means to study human immunity. Upon vaccination, the B cells that express antibodies (Abs) that happen to bind the vaccine are stimulated to proliferate and undergo mutagenesis at their Ab locus. This process may alter the composition of B cell lineages within an individual, which are known collectively as the antibody repertoire (AbR). Antibodies are also highly expressed in whole blood, potentially enabling RNA sequencing (RNA-seq) technologies to query this diversity. Less is known about the diversity of AbR responses across individuals to a given vaccine and if individuals tend to yield a similar response to the same antigenic stimulus. METHODS: Here we implement a bioinformatic pipeline that extracts the AbR information from a time-series RNA-seq dataset of five patients who were administered a seasonal trivalent influenza vaccine (TIV). We harness the detailed time-series nature of this dataset and use methods based in functional data analysis (FDA) to identify the Abs that respond to the vaccine. We then design and implement rigorous statistical tests in order to ask whether or not these patients exhibit a convergent AbR response to the same TIV. RESULTS: We find that high-resolution time-series data can be used to help identify the Abs that respond to an antigenic stimulus and that this response can exhibit a convergent nature across patients inoculated with the same vaccine. However, correlations in AbR diversity among individuals prior to inoculation can confound inference of a convergent signal unless it is taken into account. CONCLUSIONS: We developed a framework to identify the elements of an AbR that respond to an antigen. This information could be used to understand the diversity of different immune responses in different individuals, as well as to gauge the effectiveness of the immune response to a given stimulus within an individual. We also present a framework for testing a convergent hypothesis between AbRs; a hypothesis that is more difficult to test than previously appreciated. Our discovery of a convergent signal suggests that similar epitopes do select for antibodies with similar sequence characteristics.


Assuntos
Anticorpos Antivirais/genética , Biologia Computacional/métodos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Anticorpos Antivirais/sangue , Bases de Dados Genéticas , Humanos , Vacinas contra Influenza/imunologia , Modelos Estatísticos , Análise de Sequência de RNA
6.
Nat Cell Biol ; 15(7): 846-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23728424

RESUMO

The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell-cycle inhibitors p16(Ink4a) and p19(Arf). However, deletion of Ink4a/Arf only partially rescues Bmi1-null phenotypes, indicating that other important targets of BMI1 exist. Here, using the continuously growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Esmalte Dentário/citologia , Genes Homeobox/fisiologia , Incisivo/citologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Esmalte Dentário/metabolismo , Incisivo/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...