Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 673: 722-734, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901362

RESUMO

Polymer-mediated cytosolic protein delivery demonstrates a promising strategy for the development of protein therapeutics. Here, we propose a new designed diblock copolymer which realizes efficient cytosolic protein delivery both in vitro and in vivo. The polymer contains one protein-binding block composed of phenylboronic acid (PBA) and N-(3-dimethylaminopropyl) (DMAP) pendant units for protein binding and endosomal escape, respectively, followed by the response to ATP enriched in the cytosol which triggers the protein release. The other block is PEG designed to improve particle size control and circulation in vivo. By optimizing the block composition, sequence and length of the copolymer, the optimal one (BP20) was identified with the binding block containing 20 units of both PBA and DMAP, randomly distributed along the chain. When mixed with proteins, the BP20 forms stable nanoparticles and mediates efficient cytosolic delivery of a wide range of proteins including enzymes, toxic proteins and CRISPR/Cas9 ribonucleoproteins (RNP), to various cell lines. The PEG block, especially when further modified with folic acid (FA), enables tumor-targeted delivery of Saporin in vivo, which significantly suppresses the tumor growth. Our results shall inspire the design of novel polymeric vehicles with robust capability for cytosolic protein delivery, which holds great potential for both biological research and therapeutic applications.

2.
Soft Matter ; 20(16): 3499-3507, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38595066

RESUMO

Polymeric vesicles are perspective vehicles for fabricating enzymatic nanoreactors towards diverse biomedical and catalytic applications, yet the design of stable and permeable vesicles remains challenging. Herein, we developed polyion complex (PIC) vesicles featuring high stability and a permeable membrane for adequate enzyme loading and activation. Our design relies on co-assembly of an anionic diblock copolymer (PSS96-b-PEO113) with cationic branched poly(ethylenimine) (PEI). The polymer combination endows strong electrostatic interaction between the PSS and PEI building blocks, so their assembly can be implemented at a high salt concentration (500 mM NaCl), under which the charge interaction of the enzyme-polymer is inhibited. This control realizes the successful and safe loading of enzymes associated with the formation of stable PIC vesicles with an intrinsic permeable membrane that is favourable for enhancing enzymatic activity. The control factors for vesicle formation and enzyme loading were investigated, and the general application of loading different enzymes for cascade reaction was validated as well. Our study reveals that proper design and combination of polyelectrolytes is a facile strategy for fabricating stable and permeable polymeric PIC vesicles, which exhibit clear advantages for loading and activating enzymes, consequently boosting their diverse applications as enzymatic nanoreactors.


Assuntos
Polietilenoimina , Polietilenoimina/química , Permeabilidade , Polímeros/química , Polieletrólitos/química
3.
Angew Chem Int Ed Engl ; 61(39): e202206780, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35766724

RESUMO

We report a switchable, templated polymerization system where the strength of the templating effect can be modulated by solution pH and/or ionic strength. The responsiveness to these cues is incorporated through a dendritic polyamidoamine-based template of which the charge density depends on pH. The dendrimers act as a template for the polymerization of an oppositely charged monomer, namely sodium styrene sulfonate. We show that the rate of polymerization and maximum achievable monomer conversion are directly related to the charge density of the template, and hence the environmental pH. The polymerization could effectively be switched "ON" and "OFF" on demand, by cycling between acidic and alkaline reaction environments. These findings break ground for a novel concept, namely harnessing co-assembly of a template and growing polymer chains with tunable association strength to create and control coupled polymerization and self-assembly pathways of (charged) macromolecular building blocks.

4.
Chemistry ; 25(47): 11058-11065, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31150560

RESUMO

The self-assembly of protein polymers is a promising route to prepare sophisticated functional nanostructures. However, the interplay between protein self-assembly by itself and its co-assembly with a template is not well understood. Silk-based protein polymers that co-assemble with DNA to form rod-like artificial viruses are herein developed and the effects of silk block length, concentration, and temperature in the self-assembly of the proteins alone are characterized by using a combination of bulk dynamic light scattering (DLS) and single-molecule atomic force microscopy (AFM). Protein nanorods were slowly formed (up to hours) through the interaction of the silk-like blocks. The proteins present a silk-length dependent critical elongation concentration, and above it the amount and size of nanorods rapidly increase. Temperature-dependent light scattering data was adequately fitted into a cooperative model of nucleation-elongation. These results are also important to understand the self-assembly of designed viral coat proteins with DNA templates to form artificial virus-like particles and help us to define general guidelines to design proteins with the ability to precisely organize matter at the nanoscale.


Assuntos
Proteínas do Capsídeo/química , Nanotubos/química , Sequência de Aminoácidos , Proteínas do Capsídeo/metabolismo , Difusão Dinâmica da Luz , Cinética , Microscopia de Força Atômica , Temperatura
5.
Phys Rev E ; 97(3-1): 032501, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776063

RESUMO

A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.


Assuntos
Fenômenos Mecânicos , Eletricidade Estática , Modelos Moleculares
6.
Chemistry ; 23(2): 239-243, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27727480

RESUMO

We investigate a new case of a self-assembly-stimulated self-assembly in which a triblock polypeptide is combined with a anionic coordination polymer of a dipicolinic acid bis-ligand, and d- or f- block metal ions like ZnII or EuIII . The polypeptide not only has a silk-like domain that can fold and stack, but also a C-terminal cationic sequence by which it can interact with the supramolecular (coordination) polyanion. In the presence of all three ingredients (polypeptide, bis-ligand, and metal ions), we observe the initiation and slow growth of well-defined metal-containing nanorods of up to 150 nm in length, proving that self-assembly of the polypeptide is triggered by the self-assembly of the coordination polyelectrolyte and vice versa. The particles, which have a striking resemblance to rod-like viruses, are stable up to 1.2 m NaCl, and can be made fluorescent when lanthanides like EuIII are used, showing the potential to exploit functional properties and applications of virus-like supramolecular structures.


Assuntos
Complexos de Coordenação/química , Európio/química , Nanotubos/química , Peptídeos/química , Polímeros/química , Zinco/química , Corantes Fluorescentes/química , Nanotubos/ultraestrutura , Polieletrólitos , Vírus/química
7.
Biomacromolecules ; 17(6): 2063-72, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27129090

RESUMO

Nature shows excellent control over the mechanics of fibrous hydrogels by assembling protein fibers into bundles of well-defined dimensions. Yet, obtaining artificial materials displaying controlled bundling remains a challenge. Here, we developed genetically engineered protein-based polymers functionalized with heparin-binding KRSR domains and show controlled bundling using heparin as a binder. The protein polymer forms fibers upon increasing the pH to physiological values and at higher concentrations fibrous gels. We show that addition of heparin to the protein polymer with incorporated KRSR domains, induces bundling, which results in faster gel formation and stiffer gels. The interactions are expected to be primarily electrostatic and fiber bundling has an optimum when the positive charges of KRSR are approximately in balance with the negative charges of the heparin. Our study suggests that, generally, a straightforward method to control the properties of fibrous gels is to prepare a fiber former with specific binding domains and then simply adding an appropriate amount of binder.


Assuntos
Proteínas Fúngicas/química , Heparina/química , Hidrogéis , Polímeros , Difusão Dinâmica da Luz , Proteínas Fúngicas/isolamento & purificação , Hidrogéis/síntese química , Hidrogéis/química , Microscopia de Força Atômica , Microscopia Confocal , Oligopeptídeos/química , Pichia/química , Polímeros/síntese química , Polímeros/química , Ligação Proteica , Engenharia de Proteínas
8.
Lab Chip ; 15(1): 188-94, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25337820

RESUMO

In this paper we describe a new approach to quantify the stability and coalescence kinetics of thermally switchable emulsions using an imaging-based microcentrifugation method. We first show that combining synchronized high-speed imaging with microfluidic centrifugation allows the direct measurement of the thermodynamic stability of emulsions, as expressed by the critical disjoining pressure. We apply this to a thermoresponsive emulsion, allowing us to measure the critical disjoining pressure as a function of temperature. The same method, combined with quantitative image analysis, also gives access to droplet-scale details of the coalescence process. We illustrate this by measuring temperature-dependent coalescence rates and by analysing the temperature-induced switching between two distinct microscopic mechanisms by which dense emulsions can destabilise to form a homogeneous oil phase.

9.
J Am Chem Soc ; 136(5): 1942-7, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24417504

RESUMO

It is hard to obtain spatially ordered nanostructures via the polyion complexation process due to the inherent flexibility of polymers and isotropicity of ionic interactions. Here we report the formation of polyion assemblies with well-defined, periodically regular internal structure by imparting the proper stiffness to the molecular tile. A stiff bisligand TPE-C4-L2 was designed which is able to form a negatively charged supramolecular polyelectrolyte with transition metal ions. This supramolecular polyelectrolyte slowly self-assembled into polydispersed flat sheets with cocoon-like patterns. Upon the addition of an oppositely charged ordinary polyelectrolyte, the polydispersed cocoons immediately transformed into ultralong, uniform nanoladders as a result of matched ionic density recognition. The supramolecular polyelectrolytes assembled side-by-side, and the negative charges aligned in an array. This structure forced the positively charged polymers to lie along the negative charges so that the perpendicular arrangement of the oppositely charged chains was achieved. Such precise charge recognition will provide insight into the design of advanced materials with hierarchical self-assembled structures.

10.
Langmuir ; 29(12): 4019-31, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23496153

RESUMO

In order to achieve improved tribological and wear properties at semiconductor interfaces, we have investigated the thermal grafting of both alkylated and fluorine-containing ((C(x)F(2x+1))-(CH2)n-) 1-alkynes and 1-alkenes onto silicon carbide (SiC). The resulting monolayers display static water contact angles up to 120°. The chemical composition of the covalently bound monolayers was studied by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. These techniques indicate the presence of acetal groups at the organic-inorganic interface of alkyne-modified SiC surfaces. The tribological properties of the resulting organic monolayers with fluorinated or nonfluorinated end groups were explored using atomic force microscopy (AFM). It was found that the fluorinated monolayers exhibit a significant reduction of adhesion forces, friction forces, and wear resistance compared with non-fluorinated molecular coatings and especially bare SiC substrates. The successful combination of hydrophobicity and excellent tribological properties makes these strongly bound, fluorinated monolayers promising candidates for application as a thin film coating in high-performance microelectronic devices.

11.
Langmuir ; 28(33): 12311-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22834713

RESUMO

We have prepared an aqueous physical gel consisting of negatively charged silica nanoparticles bridged by ABA triblock copolymers, in which the A blocks are positively charged and the B block is neutral and water-soluble. Irreversible aggregation of the silica nanoparticles was prevented by precoating them with a neutral hydrophilic polymer. Both the elastic plateau modulus and the relaxation time increase slowly as the gel ages, indicating an increase both in the number of active bridges and in the strength with which the end blocks are adsorbed. The rate of this aging process can be increased significantly by applying a small shear stress to the sample. Our results indicate that charge-driven bridging of nanoparticles by triblock copolymers is a promising strategy for thickening of aqueous particle containing materials, such as water-based coatings.


Assuntos
Nanopartículas/química , Polímeros/química , Dióxido de Silício/química , Géis , Concentração de Íons de Hidrogênio , Reologia , Sais/química , Estresse Mecânico , Água/química
12.
Adv Colloid Interface Sci ; 175: 11-24, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22538166

RESUMO

Liquid CO(2) is a viable alternative for the toxic and environmentally harmful solvents traditionally used in dry-cleaning industry. Although liquid CO(2) dry-cleaning is being applied already at a commercial scale, it is still a relatively young technique which poses many challenges. The focus of this review is on the causes of the existing problems and directions to solve them. After presenting an overview of the state-of-the-art, we analyze the detergency challenges from the fundamentals of colloid and interface science. The properties of liquid CO(2) such as dielectric constant, density, Hamaker constant, refractive index, viscosity and surface tension are presented and in the subsequent chapters their effects on CO(2) dry-cleaning operation are delineated. We show, based on theory, that the van der Waals forces between a model soil (silica) and model fabric (cellulose) through liquid CO(2) are much stronger compared to those across water or the traditional dry-cleaning solvent PERC (perchloroethylene). Prevention of soil particle redeposition in liquid CO(2) by electrostatic stabilization is challenging and the possibility of using electrolytes having large anionic parts is discussed. Furthermore, the role of different additives used in dry-cleaning, such as water, alcohol and surfactants, is reviewed. Water is not only used as an aid to remove polar soils, but also enhances adhesion between fabric and soil by forming capillary bridges. Its role as a minor component in liquid CO(2) is complex as it depends on many factors, such as the chemical nature of fabrics and soil, and also on the state of water itself, whether present as molecular solution in liquid CO(2) or phase separated droplets. The phenomena of wicking and wetting in liquid CO(2) systems are predicted from the Washburn-Lucas equation for fabrics of various surface energies and pore sizes. It is shown that nearly complete wetting is desirable for good detergency. The effect of mechanical action and fluid dynamic conditions on dry-cleaning is analyzed theoretically. From this it follows that in liquid CO(2) an order of magnitude higher Reynold's number is required to exceed the binding forces between fabric and soil as opposed to PERC or water, mainly due to the strong van der Waals forces and the low viscosity of CO(2) at dry-cleaning operational conditions.


Assuntos
Dióxido de Carbono/química , Vestuário , Detergentes/química , Tetracloroetileno/química , Coloides/química , Solo/análise , Solo/química , Solventes/química , Tensoativos/química , Água/química
13.
J Int Soc Sports Nutr ; 9(1): 16, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22510240

RESUMO

BACKGROUND: Nutritional supplements designed to increase adenosine 5'-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. METHODS: Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine), or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube) or 7 h (pellets) post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. RESULTS: ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003) and naso-duodenal tube (P = 0.001), but not after administration via distal-release pellets. CONCLUSIONS: A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of ATP in the proximal part of the small intestine suggest that ATP or one of its metabolites is absorbed and metabolized. Uric acid itself may have ergogenic effects, but this needs further study. Also, more studies are needed to determine whether chronic administration of ATP will enhance its oral bioavailability.

14.
ACS Nano ; 6(1): 133-40, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22168567

RESUMO

We produced several pH-responsive silk-collagen-like triblocks, one acidic and two alkaline. At pH values where the silk-like block is uncharged the triblocks self-assemble into filaments. The pH-induced self-assembly was examined by atomic force microscopy, light scattering, and circular dichroism. The populations of filaments were found to be very monodisperse, indicating that the filaments start to grow from already present nuclei in the sample. The growth then follows pseudo-first-order kinetics for all examined triblocks. When normalized to the initial concentration, the growth curves of each type of triblock overlap, showing that the self-assembly is a generic process for silk-collagen-silk triblocks, regardless of the nature of their chargeable groups. The elongation speed of the filaments is slow, due to the presence of repulsive collagen-like blocks and the limited number of possibilities for an approaching triblock to successfully attach to a growing end. The formation of filaments is fully reversible. Already present filaments can start growing again by addition of new triblocks. The structure of all filaments is very rich in ß-turns, leading to ß-rolls. The triblocks attain this structure only when attaching to a growing filament.


Assuntos
Materiais Biomiméticos/síntese química , Colágeno/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Seda/química , Colágeno/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Polímeros/química , Seda/ultraestrutura , Propriedades de Superfície
15.
Chemosphere ; 81(6): 711-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20728203

RESUMO

The ecological risk assessment of chemicals including nanoparticles is based on the determination of adverse effects on organisms and on the environmental concentrations to which biota are exposed. The aim of this work was to better understand the behavior of nanoparticles in the environment, with the ultimate goal of predicting future exposure concentrations in water. We measured the concentrations and particle size distributions of CeO(2) nanoparticles in algae growth medium and deionized water in the presence of various concentrations and two types of natural organic matter (NOM). The presence of natural organic matter stabilizes the CeO(2) nanoparticles in suspension. In presence of NOM, up to 88% of the initially added CeO(2) nanoparticles remained suspended in deionized water and 41% in algae growth medium after 12d of settling. The adsorbed organic matter decreases the zeta potential from about -15 mV to -55 mV. This reduces aggregation by increased electrostatic repulsion. The particle diameter, pH, electric conductivity and NOM content shows significant correlation with the fraction of CeO(2) nanoparticles remaining in suspension.


Assuntos
Cério/química , Água Doce/química , Nanopartículas Metálicas/química , Poluentes da Água/química , Compostos Orgânicos/química , Tamanho da Partícula
16.
Chemphyschem ; 11(9): 1956-60, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20376870

RESUMO

Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.


Assuntos
Nanofios/química , Polímeros/química , Tiofenos/química , Microscopia de Força Atômica , Peso Molecular , Nanofios/ultraestrutura , Espectrometria de Fluorescência
17.
Nat Mater ; 9(2): 101-13, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20094081

RESUMO

Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.


Assuntos
Polímeros , Técnicas Biossensoriais , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Modelos Moleculares , Nanopartículas/química , Polímeros/química , Polímeros/metabolismo , Propriedades de Superfície
18.
Phys Rev Lett ; 105(20): 208301, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231268

RESUMO

In this Letter we show that in the rheology of electrostatically assembled soft materials, salt concentration plays a similar role as temperature for polymer melts, and as strain rate for soft solids. We rescale linear and nonlinear rheological data of a set of model electrostatic complexes at different salt concentrations to access a range of time scales that is otherwise inaccessible. This provides new insights into the relaxation mechanisms of electrostatic complexes, which we rationalize in terms of a microscopic mechanism underlying salt-enhanced activated processes.


Assuntos
Sais/química , Eletricidade Estática , Eletrólitos/química , Reologia , Fatores de Tempo
19.
Biomacromolecules ; 10(12): 3246-52, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19904952

RESUMO

The formation of complexes between proteins and polysaccharides is of great importance for many food systems like foams, emulsions, acidified milk drinks, and so on. The complex formation between beta-lactoglobulin (beta-lg) and pectins with a well-defined physicochemical fine structure has been studied to elucidate the influence of overall charge and local charge density of pectin on the complex formation. Binding isotherms of beta-lg to pectin are constructed using fluorescence anisotropy, which is shown to be an excellent technique for this purpose, as it is fast and requires low sample volumes. From the binding isotherms the maximal adsorbed amount, binding constant (k(obs)) and the cooperativity of binding are obtained at different ionic strengths. The Hill model is used to fit the binding isotherms and is shown to be preferable over a Langmuir fit. At pH 4.25, k(obs) shows a maximum at an ionic strength of 10 mM when using a low methyl esterified pectin (LMP) due to the balance of attractive and repulsive electrostatic forces between beta-lg and pectin and beta-lg neighbors. For two high methyl esterified pectins, one with a blockwise distribution of methyl esters (HMP(B)) and one with a random distribution (HMP(R)), this ionic strength maximum is absent and k(obs) decreases with increasing ionic strength. k(obs) is found to be largest for LMP and HMP(B) and considerably lower for HMP(R). A positive cooperativity is observed for both LMP (above an ionic strength of 45 mM) and HMP(R) (above an ionic strength of 15 mM) but not for HMP(B). Positive cooperativity is thought to be caused by a rearrangement of the pectin helix structure caused by binding of beta-lg, thus creating new or binding sites with a higher affinity. To attain strong binding of beta-lg to pectin it is preferable to use a pectin with a blockwise distribution of methyl esters. When complex formation takes place in high ionic strength media an LMP gives the best results, while at low ionic strength a high methyl esterified pectin with blockwise distribution may give better results, due to reduced electrostatic repulsion between both pectin and beta-lg and beta-lg neighbors.


Assuntos
Lactoglobulinas/química , Pectinas/química , Polarização de Fluorescência , Ácidos Hexurônicos/química , Concentração Osmolar , Ligação Proteica
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 2): 056306, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19518561

RESUMO

In this paper we demonstrate an unusual behavior in the shear-banded flow of a viscoelastic fluid. We report large and patterned fluctuations in the shear stress in an apparently fluid material undergoing steady shear, which we interpret as an intermittent and microscopic fracture and self-healing process. The statistical pattern of the fluctuations is indicative of self-organized criticality, and their magnitude can be directly related to the constitutive instability that underlies the shear banding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...