Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042
Filtrar
1.
Neural Regen Res ; 20(6): 1525-1540, 2025 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38993130

RESUMO

Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.

2.
Tissue Eng Regen Med ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39495460

RESUMO

BACKGROUND: Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes. METHODS: This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation. RESULTS: Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 × 10 cells/cm of seeding density resulting in good morphology and functionality. CONCLUSION: This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.

3.
Exp Mol Med ; 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39482535

RESUMO

Mitochondrial dysfunction induced by mitochondrial DNA (mtDNA) mutations has been implicated in various human diseases. A comprehensive analysis of mitochondrial genetic disorders requires suitable animal models for human disease studies. While gene knockout via premature stop codons is a powerful method for investigating the unique functions of target genes, achieving knockout of mtDNA has been rare. Here, we report the genotypes and phenotypes of heteroplasmic MT-ND5 gene-knockout mice. These mutant mice presented damaged mitochondrial cristae in the cerebral cortex, hippocampal atrophy, and asymmetry, leading to learning and memory abnormalities. Moreover, mutant mice are susceptible to obesity and thermogenetic disorders. We propose that these mtDNA gene-knockdown mice could serve as valuable animal models for studying the MT-ND5 gene and developing therapies for human mitochondrial disorders in the future.

4.
Front Allergy ; 5: 1456999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39493746

RESUMO

Shrimp allergy, the most common food allergy in the United States, affects up to 2% of the population. Its etiology is multi-factorial with the combination of genetic predisposition and environmental exposures. This review summarizes the latest diagnosis and management strategies for shrimp allergy. Currently, the double-blind, placebo-controlled food challenge is the gold standard for diagnosis. Moreover, mainstream and experimental management strategies include food allergen avoidance, the FDA-approved omalizumab, and oral immunotherapy. Herein, we emphasize the urgent need to develop more effective diagnostic tools and therapies for shrimp allergy.

5.
Angew Chem Int Ed Engl ; : e202416395, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39497570

RESUMO

High-altitude hypoxic brain injury (HHBI) is a kind of acute mountain sickness and the survival rate of patients with HHBI can be improved only if it is detected and treated at the early stage. However, limited by speediness and accuracy, it is still very difficult for most of current approaches to realize the early detection of HHBI. We propose herein a novel strategy for this goal based on spatiotemporal changes in the brain oxygen level. As revealed by in vivo electrochemistry, the characteristic changes of brain oxygen level under the high-altitude exposure are directly associated with the brain hypoxia status. Given brain hypoxia is the main pathogenesis of HHBI, the degree of HHBI can be diagnosed by the variation of brain oxygen, making the early detection of HHBI feasible. In addition, the risk of HHBI for mouse exposed to high-altitude hypoxia environments can be also prognosed days in advance.

6.
Sensors (Basel) ; 24(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39409273

RESUMO

In recent years, the enthusiasm for deep space missions has remained unabated, resulting in continuous advancements in the research field of space environment and particles. Many instruments carried on these missions have conducted detection of pickup ions (PUIs) in the solar system. For those instruments, simulation is an effective means and a crucial step for their performance optimization and future operation in-orbit. It holds great significance for the instrument's in-orbit performance assessment, science operation optimization, and detection efficiency enhancement. In this paper, the traditional probability model and the Vasyliunas and Siscoe (V-S) model are used to generate the PUIs, which are the input for the simulation of the PUI detector. For further analysis, the numerical results of the simulation are processed to calculate the instrument's geometric factor, mass resolution, and count rates. Then, two sets of experiments are carried out for the comparison of the traditional probability model and the V-S model. The results show that, for the simulation of the instrument in the design stage, the simulation results of the traditional probability model and the V-S model are not much different. However, for the simulation of the instrument performance in-orbit, the PUI data generated based on the V-S model gave a better result than those of the traditional probability model. This conclusion is of great significance for evaluating the detection ability of the PUI detector in future deep space explorations.

7.
J Environ Manage ; 370: 122816, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388812

RESUMO

As a green finance policy, the establishment of pilot zones for green finance reform and innovation (PZGFRI) is of crucial importance to green innovation. This study employs panel data at the city level from 2011 to 2019 to explore the impact of the PZGFRI policy on green innovation in cities by constructing the Difference-in-Differences model. The results indicate that the PZGFRI policy significantly improves overall green innovation in cities. We test the mechanisms at the city level and find that the PZGFRI policy achieves green innovation improvement by improving capital support and research and development input, and this effect could be weakened when pollution intensity in cities is high. There is heterogeneity in different regions, cities of different economic development levels, and environmental regulation strength in the green innovation improving effects. These results suggest that the government should continue to promote the development of green finance and increase regulatory efforts to realize the enhancement of green innovation. This study can not only provide the Chinese government with more focused suggestions on green finance development of macro-policies but also give important references for other developing countries on green finance development.

8.
World J Surg Oncol ; 22(1): 268, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380001

RESUMO

BACKGROUND: Ferroptosis, a non-apoptotic form of regulated cell death, plays a critical role in the suppression of various tumor types, including ovarian cancer. Artesunate (ART), a derivative of artemisinin, exhibits extensive antitumor effects and is associated with ferroptosis. This study aimed to investigate the mechanisms through which ART induces ferroptosis to inhibit ovarian cancer. METHODS: RNA sequencing was conducted to identify differentially expressed genes associated with ART-induced ferroptosis. Dual-luciferase reporter assays and electrophoretic mobility shift assays were performed to confirm the interaction between Homeobox C11 (HOXC11) and the Prominin 2 (PROM2) promoter. Cell Counting Kit-8 (CCK-8) assays, flow cytometry, and wound healing assays were used to analyze the antitumor effects of ART. Western blot, biochemical assays and transmission electron microscope were utilized to further characterize ART-induced ferroptosis. In vivo, the effects of ART on ferroptosis were examined using a xenograft mouse model. RESULTS: RNA sequencing analysis revealed that the HOXC11, PROM2 and Phosphatidylinositol 3-Kinase/ Protein Kinase B (PI3K/AKT) pathways were downregulated by ART. HOXC11 was found to regulate PROM2 expression by binding to its promoter directly. HOXC11 overexpression reversed ART-induced effects on ovarian cancer cell proliferation, migration, apoptosis and ferroptosis by activating the PROM2/PI3K/AKT signaling axis. Conversely, silencing PROM2 in HOXC11-overexpressing cells restored ART-induced ferroptosis and its associated antitumor effects by inhibiting the PI3K/AKT pathway. Consistently, in vivo studies using a xenograft mouse model confirmed that ART-induced tumor inhibition was mediated by ferroptosis through the suppression of the HOXC11/PROM2/PI3K/AKT pathway. CONCLUSION: This study identifies the HOXC11/PROM2/PI3K/AKT axis as a novel regulatory mechanism underlying ART-induced ferroptosis in ovarian cancer. Targeting the HOXC11/PROM2 axis may represent a promising therapeutic strategy for enhancing ferroptosis, offering new insights for the treatment of ovarian cancer.


Assuntos
Artesunato , Proliferação de Células , Ferroptose , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Neoplasias Ovarianas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Feminino , Ferroptose/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proliferação de Células/efeitos dos fármacos , Artesunato/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Apoptose/efeitos dos fármacos
9.
Research (Wash D C) ; 7: 0508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39434840

RESUMO

Exercise is one of the preferred management strategies for diabetic patients, but the exercise mode including type, intensity, and duration time is quite different for each patient because of individual differences. Inadequate exercise has no effect on the blood glucose control, while overexercise may cause serious side effects, such as hypoglycemia and loss of blood glucose control. In this work, we report a closed-loop feedback mode for exercise management in diabetes. A minimally invasive, biocompatible microneedle electrode patch was fabricated and used for continuously monitoring the glucose in the interstitial fluid. Further, in conjunction with using a wireless electrochemical device, the glucose signals can be analyzed to output the potency of exercise and give advice on exercise management. A custom exercise given by this closed-loop feedback mode can reduce the used dose of insulin and avoid side effect during and after exercise. We believe that this work can provide a novel comprehensive guidance for diabetic patients.

10.
Small ; : e2407848, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39439184

RESUMO

Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric-field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb-codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V-1, is attained in the LKNNS ceramic at 20 kV cm-1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A-site vacancy-oxygen vacancy ( V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ ) defect dipoles and the increase in nano-domains. The hierarchical domain configuration and V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of V A ' - V O • • ${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.

11.
Biosensors (Basel) ; 14(10)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39451707

RESUMO

In this paper, we present a sensitive and highly reproducible fluorescence immunosensor for detecting PSA in human serum. A unique feature of this study is that it uses creatively designed paddle screw-type devices and their custom-made rotating system for PSA immunoassay. The paddle screw devices were designed to maximize the surface-to-volume ratio over which the immunoassay reaction could occur to improve detection sensitivity. This paddle screw-based immunoassay offers an accessible and efficient method with a short analysis time of less than 30 min. Active rotation of the paddle screw plays a crucial role in fast and accurate analysis of PSA. Additionally, a paddle screw-based immunoassay and subsequent fluorescence detection using a custom prototype fluorescence detection system were compared to a typical well plate-based immunoassay system. Results of PSA detection in human serum showed that the detection sensitivity through the paddle screw-based analysis improved about five times compared to that with a well plate-based analysis.


Assuntos
Técnicas Biossensoriais , Antígeno Prostático Específico , Humanos , Antígeno Prostático Específico/sangue , Imunoensaio , Fluorescência , Masculino
12.
Natl Sci Rev ; 11(10): nwae329, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39439720

RESUMO

Thermoelectric Peltier coolers (PCs) are being increasingly used as temperature stabilizers for optoelectronic devices. Increasing integration drives PC miniaturization, requiring thermoelectric materials with good strength. We demonstrate a simultaneous gain of thermoelectric and mechanical performance in (Bi, Sb)2Te3, and successfully fabricate micro PCs (2 × 2 mm2 cross-section) that show excellent maximum cooling temperature difference of 89.3 K with a hot-side temperature of 348 K. A multi-step process involving annealing, hot-forging and composition design, is developed to modify the atomic defects and nano- and microstructures. The peak ZT is improved to ∼1.50 at 348 K, and the flexural and compressive strengths are significantly enhanced to ∼140 MPa and ∼224 MPa, respectively. These achievements hold great potential for advancing solid-state refrigeration technology in small spaces.

13.
Microb Cell Fact ; 23(1): 290, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39443949

RESUMO

BACKGROUND: Microalgae are potential sustainable resources for the production of value-added chemicals that can be used as biofuels, pharmaceuticals, and nutritional supplements. Arachidonic acid (ARA), a omega-6 fatty acid, plays a crucial role in infant development and immune response, and can be used in cosmetics and pharmaceuticals. Demand for industrial-scale ARA production is continuously increasing because of its broad applicability. To address this demand, there has been a significant shift towards microorganism-based ARA production. To accelerate large-scale ARA production, it is crucial to select suitable strains and establish optimal culture conditions. RESULTS: Here, we isolated a novel microalga Lobosphaera incisa CFRC-1, a valuable strain that holds promise as a feedstock for ARA production. Optimal cultivation conditions were investigated using a high-throughput screening method to enhance ARA production in this novel strain. Out of 71 candidates, four organic carbon substrates were identified that could be utilized by L. incisa CFRC-1. Through flask-scale verification, fructose was confirmed as the optimal organic carbon substrate for promoting microalgal growth, total lipid accumulation, and ARA production. Subsequently, we investigated appropriate substrate concentration and cultivation temperature, confirming that the optimal conditions were 30 g L- 1 of fructose and 27 ℃ of temperature. Under these optimized conditions, biomass and ARA production reached 13.05 ± 0.40 g L- 1 and 97.98 ± 7.33 mg L- 1, respectively, representing 9.6-fold and 5.3-fold increases compared to the conditions before optimization conditions. These results achieved the highest biomass and ARA production in flask-scale cultivation, indicating that our approach effectively improved both production titer and productivity. CONCLUSIONS: This study presents a novel microalgae and optimized conditions for enhancing biomass and ARA production, suggesting that this approach is a practical way to accelerate the production of valuable microalgae-based chemicals. These findings provide a basis for large-scale production of ARA-utilizing microalgae for industrial applications.


Assuntos
Ácido Araquidônico , Carbono , Microalgas , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Ácido Araquidônico/metabolismo , Ácido Araquidônico/biossíntese , Carbono/metabolismo , Biomassa , Ensaios de Triagem em Larga Escala/métodos , Biocombustíveis , Frutose/metabolismo
15.
Foods ; 13(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39335900

RESUMO

Given the persistent occurrence of foodborne illnesses linked to both raw and processed vegetables, understanding microbial behavior in these foods under distribution conditions is crucial. This study aimed to develop predictive growth models for Salmonella spp. and Listeria monocytogenes in raw (mung bean sprouts, onion, and cabbage) and processed vegetables (shredded cabbage salad, cabbage and onion juices) at various temperatures, ranging from 4 to 36 °C. Growth models were constructed and validated using isolated strains of Salmonella spp. (S. Bareilly, S. Enteritidis, S. Typhimurium) and L. monocytogenes (serotypes 1/2a and 1/2b) from diverse food sources. The minimum growth temperatures for Salmonella varied among different vegetable matrices: 8 °C for mung bean sprouts, 9 °C for both onion and cabbage, and 10 °C for ready-to-eat (RTE) shredded cabbage salad. Both pathogens grew in cabbage juice at temperatures above 17 °C, while neither demonstrated growth in onion juice, even at 36 °C. Notably, Salmonella spp. exhibited faster growth than L. monocytogenes in all tested samples. At 8 °C, the lag time (LT) and specific growth rate (SGR) for Salmonella spp. in mung bean sprouts were approximately tenfold longer and threefold slower, respectively, compared to those at 10 °C. A decrease in refrigerator storage temperature by 1 or 2 degrees significantly prevented the growth of Salmonella in raw vegetables. These findings offer valuable insights into assessing the risk of foodborne illness associated with the consumption of raw and processed vegetables and inform management strategies in mitigating these risks.

16.
J Invest Dermatol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241981

RESUMO

Blue light, a high-energy radiation in the visible light spectrum, was recently reported to induce skin pigmentation. In this study, we investigated the involvement of TRPV1-mediated signaling along with OPN3 in blue light-induced melanogenesis as well as its signaling pathway. Operating downstream target of OPN3 in blue light-induced melanogenesis, blue light activated TRPV1 and upregulated its expression, resulting in calcium influx. Calcium ion induced the activation of calcium/calmodulin-dependent protein kinase II and MAPK. It also downregulated clusterin expression, leading to the nuclear translocation of PAX3, ultimately affecting melanin synthesis. In addition, blue light interfered with autophagy-mediated regulation of melanosomes by decreasing not only the interaction between clusterin and LC3B but the expression of activating transcription factor family. These findings demonstrate that the pigmenting effects of blue light are mediated by calcium/calmodulin-dependent protein kinase II- and MAPK-mediated signaling as well as clusterin-dependent inhibition of autophagy through OPN3-TRPV1-calcium influx, suggesting, to our knowledge, a previously unreported signaling pathway through which blue light regulates melanocyte biology. Furthermore, these results suggest that TRPV1 and clusterin could be potential therapeutic targets for blue light-induced pigmentation due to prolonged exposure to blue light.

17.
Plant Methods ; 20(1): 145, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300484

RESUMO

BACKGROUND: This study aimed to produce Odontoglossum ringspot virus (ORSV)-free Cymbidium orchid 'New True' plants from ORSV-infected mother plants by culturing their meristems and successively repeating subcultures of protocorm-like bodies (PLBs) derived from the meristems. RESULTS: Initially, ORSV was confirmed as the causative agent of viral symptoms in orchid leaves via reverse transcription-polymerase chain reaction (RT-PCR) analysis. Meristems from infected plants were cultured to generate PLBs, which in sequence were repeatedly subcultured up to four times. RT-PCR and quantitative RT-PCR analyses revealed that while ORSV was undetectable in shoots derived from the first subculture, complete elimination of the virus required at least a second subculture. Genetic analysis using inter-simple sequence repeat markers indicated no somaclonal variation between regenerated plants and the mother plant, suggesting that genetic consistency was maintained. CONCLUSION: Overall, our findings demonstrate that subculturing PLBs for a second time is ideal for producing genetically stable, ORSV-free Cymbidium orchids, thus offering a practical means of generating genetically stable, virus-free plants and enhancing plant health and quality in the orchid industry.

18.
Science ; 385(6713): 1077-1080, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236185

RESUMO

There is extensive geologic evidence of ancient volcanic activity on the Moon, but it is unclear how long that volcanism persisted. Magma fountains produce volcanic glasses, which have previously been found in samples of the Moon's surface. We investigated ~3000 glass beads in lunar soil samples collected by the Chang'e-5 mission and identified three as having a volcanic origin on the basis of their textures, chemical compositions, and sulfur isotopes. Uranium-lead dating of the three volcanic glass beads shows that they formed 123 ± 15 million years ago. We measured high abundances of rare earth elements and thorium in these volcanic glass beads, which could indicate that such recent volcanism was related to local enrichment of heat-generating elements in the mantle sources of the magma.

19.
Adv Mater ; : e2409142, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308207

RESUMO

Thrombosis is a significant threat to human health. However, the existing clinical treatment methods have limitations. Magnetic soft matter is used in the biomedical field for years, and ferromagnetic liquids exhibit tunable stiffness and on-demand movement advantages under magnetic fields. In this study, a ferromagnetic liquid robot (FMLR) is developed and applied it to thrombus removal in complex blood vessels. The FMLR consisted of Fe3O4 magnetic nanoparticles and dimethyl silicone oil. The FMLR can pass through a narrow complex maze through shape deformation by tailoring the intensity and direction of the external magnetic field. Finite element simulation analysis is used to validate the mechanism of controllable FMLR movements. Importantly, the storage modulus of FMLR can be tuned from 0.1 to 2018 Pa by varying the external magnetic intensity, ensuring its effectiveness in removing rigid and stubborn thrombi present on the vascular walls. Toward medical robotic applications, FMLR can be used in telerobotic neurointerventional. Experiments demonstrating the capability of FMLR to remove thrombi in the ear veins of rabbits are conducted. This study introduces an efficient approach for thrombus elimination, broadening the utilization of FMLRs within the realm of clinical medicine.

20.
Biochim Biophys Acta Rev Cancer ; 1879(6): 189178, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241895

RESUMO

The matrisome, a group of proteins constituting or interacting with the extracellular matrix (ECM), has garnered attention as a potent regulator of cancer progression. An increasing number of studies have focused on cancer matrisome utilizing diverse -omics approaches. Here, we present diverse patterns of matrisomal populations within cancer tissues, exploring recent -omics studies spanning different '-omics' levels (epigenomics, genomics, transcriptomics, and proteomics), as well as newly developed sequencing techniques such as single-cell RNA sequencing and spatial transcriptomics. Some matrisome genes showed uniform patterns of upregulated or downregulated expression across various cancers, while others displayed different expression patterns according to the cancer types. This matrisomal dysregulation in cancer was further examined according to their originating cell type and spatial location in the tumor tissue. Experimental studies were also collected to demonstrate the identified roles of matrisome genes during cancer progression. Interestingly, many studies on cancer matrisome have suggested matrisome genes as effective biomarkers in cancer research. Although the specific mechanisms and clinical applications of cancer matrisome have not yet been fully elucidated, recent techniques and analyses on cancer matrisomics have emphasized their biological importance in cancer progression and their clinical implications in deciding the efficacy of cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...