Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Inorg Chem ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973094

RESUMO

Metal nanozymes have offered attractive opportunities for biocatalysis and biomedicine. However, fabricating nanozymes simultaneously possessing highly catalytic selectivity and activity remains a great challenge due to the lack of three-dimensional (3D) architecture of the catalytic pocket in natural enzymes. Here, we integrate rhodium nanocluster (RhNC), reduced graphene oxide (rGO), and protamine (PRTM, a typical arginine-rich peptide) into a composite facilely based on the single peptide. Remarkably, the PRTM-RhNC@rGO composite displays outstanding selectivity, activity, and stability for the catalytic degradation of uric acid. The reaction rate constant of the uric acid oxidation catalyzed by the PRTM-RhNC@rGO composite is about 1.88 × 10-3 s-1 (4 µg/mL), which is 37.6 times higher than that of reported RhNP (k = 5 × 10-5 s-1, 20 µg/mL). Enzyme kinetic studies reveal that the PRTM-RhNC@rGO composite exhibits a similar affinity for uric acid as natural uricase. Furthermore, the uricase-like activity of PRTM-RhNC@rGO nanozymes remains in the presence of sulfur substances and halide ions, displaying incredibly well antipoisoning abilities. The analysis of the structure-function relationship indicates the PRTM-RhNC@rGO composite features the substrate binding site near the catalytic site in a confined space contributed by 2D rGO and PRTM, resulting in the high-performance of the composite nanozyme. Based on the outstanding uricase-like activity and the interaction of PRTM and uric acid, the PRTM-RhNC@rGO composite can retard the urate crystallization significantly. The present work provides new insights into the design of metal nanozymes with suitable binding sites near catalytic sites by mimicking pocket-like structures in natural enzymes based on simple peptides, conducing to broadening the practical application of high-performance nanozymes in biomedical fields.

2.
Nano Lett ; 24(25): 7637-7644, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874010

RESUMO

Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.

3.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910236

RESUMO

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Assuntos
Autofagia , Temperatura Baixa , Exossomos , Camundongos Endogâmicos C57BL , MicroRNAs , Osteogênese , Animais , Autofagia/efeitos dos fármacos , Camundongos , Exossomos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoporose/patologia , Diferenciação Celular/efeitos dos fármacos , Osso e Ossos/metabolismo , Feminino , Densidade Óssea , Sirolimo/farmacologia
4.
Respir Res ; 25(1): 209, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750527

RESUMO

BACKGROUND: Limited research has investigated the relationship between small airway dysfunction (SAD) and static lung hyperinflation (SLH) in patients with post-acute sequelae of COVID-19 (PASC) especially dyspnea and fatigue. METHODS: 64 patients with PASC were enrolled between July 2020 and December 2022 in a prospective observational cohort. Pulmonary function tests, impulse oscillometry (IOS), and symptom questionnaires were performed two, five and eight months after acute infection. Multivariable logistic regression models were used to test the association between SLH and patient-reported outcomes. RESULTS: SLH prevalence was 53.1% (34/64), irrespective of COVID-19 severity. IOS parameters and circulating CD4/CD8 T-cell ratio were significantly correlated with residual volume to total lung capacity ratio (RV/TLC). Serum CD8 + T cell count was negatively correlated with forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) with statistical significance. Of the patients who had SLH at baseline, 57% continued to have persistent SLH after eight months of recovery, with these patients tending to be older and having dyspnea and fatigue. Post-COVID dyspnea was significantly associated with SLH and IOS parameters R5-R20, and AX with adjusted odds ratios 12.4, 12.8 and 7.6 respectively. SLH was also significantly associated with fatigue. CONCLUSION: SAD and a decreased serum CD4/CD8 ratio were associated with SLH in patients with PASC. SLH may persist after recovery from infection in a substantial proportion of patients. SAD and dysregulated T-cell immune response correlated with SLH may contribute to the development of dyspnea and fatigue in patients with PASC.


Assuntos
COVID-19 , Pulmão , Síndrome de COVID-19 Pós-Aguda , Testes de Função Respiratória , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , COVID-19/fisiopatologia , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/diagnóstico , COVID-19/imunologia , Estudos Prospectivos , Pulmão/fisiopatologia , Testes de Função Respiratória/métodos , Idoso , Adulto , Recuperação de Função Fisiológica , Fatores de Tempo , Dispneia/fisiopatologia , Dispneia/epidemiologia , Dispneia/diagnóstico , Volume Expiratório Forçado/fisiologia
5.
Nat Commun ; 15(1): 4004, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734697

RESUMO

The current thyroid ultrasound relies heavily on the experience and skills of the sonographer and the expertise of the radiologist, and the process is physically and cognitively exhausting. In this paper, we report a fully autonomous robotic ultrasound system, which is able to scan thyroid regions without human assistance and identify malignant nod- ules. In this system, human skeleton point recognition, reinforcement learning, and force feedback are used to deal with the difficulties in locating thyroid targets. The orientation of the ultrasound probe is adjusted dynamically via Bayesian optimization. Experimental results on human participants demonstrated that this system can perform high-quality ultrasound scans, close to manual scans obtained by clinicians. Additionally, it has the potential to detect thyroid nodules and provide data on nodule characteristics for American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) calculation.


Assuntos
Robótica , Glândula Tireoide , Nódulo da Glândula Tireoide , Ultrassonografia , Humanos , Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos , Ultrassonografia/instrumentação , Robótica/métodos , Robótica/instrumentação , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/patologia , Teorema de Bayes , Feminino , Adulto , Masculino , Neoplasias da Glândula Tireoide/diagnóstico por imagem
6.
J Bone Miner Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624186

RESUMO

BACKGROUND: The relationship between socio-economic status and bone-related diseases is attracting increasing attention. Therefore, a bidirectional Mendelian randomization (MR) analysis was performed in this study. METHODS: Genetic data on factors associated with socio-economic status (average total household income before tax, years of schooling completed and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fracture (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses, and multivariable MR was performed to enhance the robustness of our findings. RESULTS: A higher educational attainment was associated with an increased level of eBMD (beta:0.06, 95% CI:0.01-0.10, P = 7.24 × 10-3), and decreased risk of osteoporosis (OR:0.78, 95% CI:0.65-0.94, P = 8.49 × 10-3), spine fracture (OR:0.76, 95% CI:0.66-0.88, P = 2.94 × 10-4), femur fracture (OR:0.78, 95% CI:0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR:0.79, 95% CI:0.70-0.88, P = 2.05 × 10-5), foot fracture (OR:0.78, 95% CI:0.66-0.93, P = 5.92 × 10-3) and wrist-hand fracture (OR:0.83, 95% CI:0.73-0.95, P = 7.15 × 10-3). Further, material deprivation seemed to harm the spine fracture (OR:2.63, 95% CI:1.43-4.85, P = 1.91 × 10-3). A higher level of FN-BMD positively affected increased household income (beta:0.03, 95% CI:0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index (BMI), type 2 diabetes, smoking initiation, and frequency of alcohol intake. CONCLUSIONS: The Mendelian randomization analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings offer valuable insights into the formulation of health guidelines and policy development.


We conducted stratified analyses to explore the causal links between socio-economic status and osteoporosis and various fractures and observed that education significantly reduced risk of osteoporosis and lower eBMD. It also lowered the risks of fractures of spine, femur, lower leg-ankle, foot, and wrist-hand, while material deprivation exhibited positive associations with spine fracture risk. Bidirectional MR analysis showed that an elevated score of FN-BMD was associated with a higher income level. Our study shows the importance of conducting routine BMD estimations and osteoporosis screening, to enhance knowledge and awareness among individuals to promote bone health and prevent fractures.

7.
Obes Rev ; 25(6): e13740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571458

RESUMO

Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.


Assuntos
Tecido Adiposo , Exossomos , Doenças Metabólicas , RNA não Traduzido , Humanos , Exossomos/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Tecido Adiposo/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/fisiologia , Animais
8.
Transplant Proc ; 56(3): 701-704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548510

RESUMO

BACKGROUND: Liver fibrosis is a chronic inflammatory disease that progresses and has a high mortality rate. This study was performed to investigate the protective effect of rapamycin on experimentally induced chronic liver injury in mice models using both biochemical parameters of liver function enzymes. METHODS: Twenty-four mice were divided randomly into 4 equal groups: [1] the normal group, n = 6; [2] the liver fibrosis (LF) group, n = 6; [3] the LF with the treatment of rapamycin group, n = 6; [4] the LF with the treatment of silimaryn, n = 6. RESULTS: In the group receiving oral administration of rapamycin, aspartate aminotransferase, alanine aminotransferase, urea, and creatinine were found to significantly decrease compared to the liver fibrosis group. Rapamycin, in the orally administered group, demonstrated a statistically significant decrease in the expression of interleukin (IL) 10, IL-1B, inducible nitric oxide synthase, and tumor necrosis factor alpha compared to the liver fibrosis group. CONCLUSIONS: In this study, we explored the potential therapeutic effects of rapamycin on liver fibrosis in an animal model.


Assuntos
Modelos Animais de Doenças , Cirrose Hepática , Camundongos Endogâmicos C57BL , Sirolimo , Animais , Sirolimo/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Camundongos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Creatinina/sangue
9.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38464291

RESUMO

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

10.
Mol Neurobiol ; 61(3): 1687-1703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37755583

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation under investigation for treatment of a wide range of neurological disorders. In particular, the therapeutic application of rTMS for neurodegenerative diseases such as Alzheimer's disease (AD) is attracting attention. However, the mechanisms underlying the therapeutic efficacy of rTMS have not yet been elucidated, and few studies have systematically analyzed the stimulation parameters. In this study, we found that treatment with rTMS contributed to restoration of memory deficits by activating genes involved in synaptic plasticity and long-term memory. We evaluated changes in several intracellular signaling pathways in response to rTMS stimulation; rTMS treatment activated STAT, MAPK, Akt/p70S6K, and CREB signaling. We also systematically investigated the influence of rTMS parameters. We found an effective range of applications for rTMS and determined the optimal combination to achieve the highest efficiency. Moreover, application of rTMS inhibited the increase in cell death induced by hydrogen peroxide. These results suggest that rTMS treatment exerts a neuroprotective effect on cellular damage induced by oxidative stress, which plays an important role in the pathogenesis of neurological disorders. rTMS treatment attenuated streptozotocin (STZ)-mediated cell death and AD-like pathology in neuronal cells. In an animal model of sporadic AD caused by intracerebroventricular STZ injection, rTMS application improved cognitive decline and showed neuroprotective effects on hippocampal histology. Overall, this study will help in the design of stimulation protocols for rTMS application and presents a novel mechanism that may explain the therapeutic effects of rTMS in neurodegenerative diseases, including AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Estimulação Magnética Transcraniana/métodos , Doença de Alzheimer/metabolismo , Estreptozocina , Hipocampo/metabolismo
11.
Dis Model Mech ; 16(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929799

RESUMO

To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos , Animais , Proteína C-Reativa , Dieta Hiperlipídica , Camundongos Transgênicos , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Microambiente Tumoral
12.
J Microbiol Immunol Infect ; 56(6): 1147-1157, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802686

RESUMO

BACKGROUND: SARS-CoV-2 spike proteins (SP) can bind to the human angiotensin-converting enzyme 2 (ACE2) in human pulmonary alveolar epithelial cells (HPAEpiC) and trigger an inflammatory process. Angiotensin-(1-7) may have an anti-inflammatory effect through activation of Mas receptor. This study aims to investigate whether SARS-CoV-2 SP can induce inflammation through ACE2 in the alveolar epithelial cells which can be modulated through angiotensin-(1-7)/Mas receptor axis. METHODS: HPAEpiC were treated with SARS-CoV-2 SP in the presence or absence of ACE2 antagonist-dalbavancin and Mas receptor agonist-angiotensin-(1-7). Proinflammatory cytokine production (IL-6 and IL-8) were measured at mRNA and protein levels. MAP kinase phosphorylation and transcription factor activation was determined by Western Blot. Mas receptor was blocked by either antagonist (A779) or knockdown (specific SiRNA). Experiments were replicated using A549 cells. FINDINGS: SARS-CoV-2 SP (5 µg/mL) significantly induced MAP kinase (ERK1/2) phosphorylation, downstream transcription factor (activator protein-1, AP-1) activation and cytokine production (IL-6 and IL-8) at both mRNA and protein levels. Pretreatment with dalbavancin (10 µg/mL), or angiotensin-(1-7) (10 µM) significantly reduced ERK1/2 phosphorylation, AP-1 activation, and cytokine production. However, these angiotensin-(1-7)-related protective effects were significantly abolished by blocking Mas receptor with either antagonist (A799,10 µM) or SiRNA knockdown. INTERPRETATION: SARS-CoV-2 SP can induce proinflammatory cytokine production, which can be inhibited by either ACE2 antagonist or Mas receptor agonist-angiotensin-(1-7). Angiotensin-(1-7)-related protective effect on cytokine reduction can be abolished by blocking Mas receptor. Our findings suggest that ACE2/angiotensin-(1-7)/Mas axis may serve as a therapeutic target to control inflammatory response triggered by SARS-CoV-2 SP.


Assuntos
COVID-19 , Interleucina-6 , Humanos , Células Epiteliais Alveolares/metabolismo , Enzima de Conversão de Angiotensina 2 , Citocinas , Interleucina-6/metabolismo , Interleucina-8 , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro , RNA Interferente Pequeno/metabolismo , RNA Viral , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Fator de Transcrição AP-1
13.
J Nanobiotechnology ; 21(1): 315, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667298

RESUMO

Vascular calcification often occurs in patients with chronic renal failure (CRF), which significantly increases the incidence of cardiovascular events in CRF patients. Our previous studies identified the crosstalk between the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and the paracrine effect of VSMCs, which regulate the calcification of VSMCs. Herein, we aim to investigate the effects of exosomes secreted by high phosphorus (HPi) -induced adventitial fibroblasts (AFs) on the calcification of VSMCs and the underlying mechanism, which will further elucidate the important role of AFs in high phosphorus vascular wall microenvironment. The conditioned medium of HPi-induced AFs promotes the calcification of VSMCs, which is partially abrogated by GW4869, a blocker of exosomes biogenesis or release. Exosomes secreted by high phosphorus-induced AFs (AFsHPi-Exos) show similar effects on VSMCs. miR-21-5p is enriched in AFsHPi-Exos, and miR-21-5p enhances osteoblast-like differentiation of VSMCs by downregulating cysteine-rich motor neuron 1 (Crim1) expression. AFsHPi-Exos and exosomes secreted by AFs with overexpression of miR-21-5p (AFsmiR21M-Exos) significantly accelerate vascular calcification in CRF mice. In general, AFsHPi-Exos promote the calcification of VSMCs and vascular calcification by delivering miR-21-5p to VSMCs and subsequently inhibiting the expression of Crim1. Combined with our previous studies, the present experiment supports the theory of vascular wall microenvironment.


Assuntos
Exossomos , MicroRNAs , Calcificação Vascular , Animais , Camundongos , Células Endoteliais , Fibroblastos , Fósforo , MicroRNAs/genética , Receptores de Proteínas Morfogenéticas Ósseas
14.
Lung Cancer ; 184: 107352, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657238

RESUMO

OBJECTIVES: About 20% of stage I lung adenocarcinoma (LUAD) patients suffer a relapse after surgical resection. While finer substages have been defined and refined in the AJCC staging system, clinical investigations on the tumor molecular landscape are lacking. MATERIALS AND METHODS: We performed whole exome sequencing, DNA copy number and microRNA profiling on paired tumor-normal samples from a cohort of 113 treatment-naïve stage I Taiwanese LUAD patients. We searched for molecular features associated with relapse-free survival (RFS) of stage I or its substages and validated the findings with an independent Caucasian LUAD cohort. RESULTS: We found sixteen nonsynonymous mutations harbored at EGFR, KRAS, TP53, CTNNB1 and six other genes associated with poor RFS in a dose-dependent manner via variant allele fraction (VAF). An index, maxVAF, was constructed to quantify the overall mutation load from genes other than EGFR. High maxVAF scores discriminated a small group of high-risk LUAD at stage I (median RFS: 4.5 versus 69.5 months; HR = 10.5, 95% CI = 4.22-26.12, P < 0.001). At the substage level, higher risk was found for patients with high maxVAF or high miR-31; IA (median RFS: 32.1 versus 122.8 months, P = 0.005) and IB (median RFS: 7.1 versus 26.2, P = 0.049). MicroRNAs, miR-182, miR-183 and miR-196a were found correlated with EGFR mutation and poor RFS in stage IB patients. CONCLUSION: Distinctive features of somatic gene mutation and microRNA expression of stage I LUAD are characterized to complement the survival prognosis by substaging. The findings open up more options for precision management of stage I LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Sequenciamento do Exoma , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , Receptores ErbB/genética
16.
Ann Dermatol ; 35(4): 285-292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37550229

RESUMO

BACKGROUND: Recent studies have reported that psoriasis is associated with the development of metabolic syndrome. Genome-wide association studies have been used to discover gene variant markers that occur frequently in case group in relation to specific diseases. OBJECTIVE: The aim of the present study was to investigate the variants of specific genes involved in metabolic syndrome associated with psoriasis. METHODS: A total of 95 psoriasis patients were recruited and divided into two groups: one with metabolic syndrome (38 patients) and the other without (57 patients). After genotyping, imputation, and quality checking, the association between the several single nucleotide polymorphisms and metabolic syndrome in psoriasis was tested, followed by gene set enrichment analysis. RESULTS: We found 76 gene polymorphisms that conferred an increased risk for metabolic syndrome in patients with psoriasis. Four single nucleotide polymorphisms (rs17154774 of FRMD4A, rs77498336 of GPR116, rs75949580 and rs187682251 of MAPK4) showed the strongest association between metabolic syndrome and psoriasis. The epidermal growth factor receptor protein was located at the center of the protein interactions for the gene polymorphisms. CONCLUSION: This study identified several previously unknown polymorphisms associated with metabolic syndrome in psoriasis. These results highlight the potential for future genetic studies to elucidate the development, and ultimately prevent the onset, of metabolic syndrome in patients with psoriasis.

17.
J Nanobiotechnology ; 21(1): 226, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461031

RESUMO

Medial arterial calcification (MAC), a systemic vascular disease different from atherosclerosis, is associated with an increased incidence of cardiovascular events. Several studies have demonstrated that ambient temperature is one of the most important factors affecting cardiovascular events. However, there has been limited research on the effect of different ambient temperatures on MAC. In the present study, we showed that cold temperature exposure (CT) in mice slowed down the formation of vitamin D (VD)-induced vascular calcification compared with room temperature exposure (RT). To investigate the mechanism involved, we isolated plasma-derived exosomes from mice subjected to CT or RT for 30 days (CT-Exo or RT-Exo, respectively). Compared with RT-Exo, CT-Exo remarkably alleviated the calcification/senescence formation of vascular smooth muscle cells (VSMCs) and promoted autophagy by activating the phosphorylation of AMP-activated protein kinase (p-AMPK) and inhibiting phosphorylation of mammalian target of rapamycin (p-mTOR). At the same time, CT-Exo promoted autophagy in ß-glycerophosphate (ß-GP)-induced VSMCs. The number of autophagosomes and the expression of autophagy-related proteins ATG5 and LC3B increased, while the expression of p62 decreased. Based on a microRNA chip microarray assay and real-time polymerase chain reaction, miR-320a-3p was highly enriched in CT-Exo as well as thoracic aortic vessels in CT mice. miR-320a-3p downregulation in CT-Exo using AntagomiR-320a-3p inhibited autophagy and blunted its anti-calcification protective effect on VSMCs. Moreover, we identified that programmed cell death 4 (PDCD4) is a target of miR-320a-3p, and silencing PDCD4 increased autophagy and decreased calcification in VSMCs. Treatment with CT-Exo alleviated the formation of MAC in VD-treated mice, while these effects were partially reversed by GW4869. Furthermore, the anti-arterial calcification protective effects of CT-Exo were largely abolished by AntagomiR-320a-3p in VD-induced mice. In summary, we have highlighted that prolonged cold may be a good way to reduce the incidence of MAC. Specifically, miR-320a-3p from CT-Exo could protect against the initiation and progression of MAC via the AMPK/mTOR autophagy pathway.


Assuntos
Aterosclerose , MicroRNAs , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antagomirs , Serina-Treonina Quinases TOR , Autofagia , MicroRNAs/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
18.
Micromachines (Basel) ; 14(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37374801

RESUMO

Superhydrophobicity, a unique natural phenomenon observed in organisms such as lotus leaves and desert beetles, has inspired extensive research on biomimetic materials. Two main superhydrophobic effects have been identified: the "lotus leaf effect" and the "rose petal effect", both showing water contact angles larger than 150°, but with differing contact angle hysteresis values. In recent years, numerous strategies have been developed to fabricate superhydrophobic materials, among which 3D printing has garnered significant attention due to its rapid, low-cost, and precise construction of complex materials in a facile way. In this minireview, we provide a comprehensive overview of biomimetic superhydrophobic materials fabricated through 3D printing, focusing on wetting regimes, fabrication techniques, including printing of diverse micro/nanostructures, post-modification, and bulk material printing, and applications ranging from liquid manipulation and oil/water separation to drag reduction. Additionally, we discuss the challenges and future research directions in this burgeoning field.

19.
Front Pharmacol ; 14: 1112484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37169000

RESUMO

Introduction: Necroptosis is an alternative, caspase-independent programmed cell death that appears when apoptosis is inhibited. A gowing number of studies have reflected the link between necroptosis and tumors. However, only some systematical bibliometric analyses were focused on this field. In this study, we aimed to identify and visualize the cooperation between countries, institutions, authors, and journals through a bibliometric analysis to help understand the hotspot trends and emerging topics regarding necroptosis and cancer research. Methods: The articles and reviews on necroptosis and cancer were obtained from the Web of Science Core Collection on 16 September 2022. Countries, institutions, authors, references, and keywords in this field were visually analyzed by CtieSpace 5.8.R3, VOSviewer 1.6.18, and R package "bibliometrix." Results: From 2006 to 2022, 2,216 qualified original articles and reviews on necroptosis in tumors were published in 685 academic journals by 13,009 authors in 789 institutions from 75 countries/regions. Publications focusing on necroptosis and cancer have increased violently in the past 16 years, while the citation number peaked around 2008-2011. Most publications were from China, while the United States maintained the dominant position as a "knowledge bridge" in necroptosis and cancer research; meanwhile, Ghent University and the Chinese Academy of Sciences were the most productive institutions. Moreover, only a tiny portion of the articles were multiple-country publications. Peter Vandenabeele had the most significant publications, while Alexei Degterev was most often co-cited. Peter Vandenabeele also gets the highest h-index and g-index in this research field. Cell Death and Disease was the journal with the most publications on necroptosis and cancer, which was confirmed to be the top core source by Bradford's Law. At the same time, Cell was the leading co-cited journal, and the focus area of these papers was molecular, biology, and immunology. High-frequency keywords mainly contained those that are molecularly related (MLKL, NF-kB, TNF, RIPK3, RIPK1), pathological process related (necroptosis, apoptosis, cell-death, necrosis, autophagy), and mechanism related (activation, expression, mechanisms, and inhibition). Conclusion: This study comprehensively overviews necroptosis and cancer research using bibliometric and visual methods. Research related to necroptosis and cancer is flourishing. Cooperation and communication between countries and institutions must be further strengthened. The information in our paper would provide valuable references for scholars focusing on necroptosis and cancer.

20.
Cancer Med ; 12(13): 14511-14525, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212485

RESUMO

OBJECTIVE: In lung cancer patients, most deaths are caused by the distant dissemination of cancer cells. Epithelial-mesenchymal transition (EMT) and collective cell migration are distinct and important mechanisms involved in cancer invasion and metastasis. Additionally, microRNA dysregulation contributes significantly to cancer progression. In this study, we aimed to explore the function of miR-503 in cancer metastasis. METHODS: Molecular manipulations (silencing or overexpression) were performed to investigate the biological functions of miR-503 including migration and invasion. Reorganization of cytoskeleton was assessed using immunofluorescence and the relationship between miR-503 and downstream protein tyrosine kinase 7 (PTK7) was assessed using quantitative real-time PCR, immunoblotting, and reporter assays. The tail vein metastatic animal experiments were performed. RESULTS: Herein, we demonstrated that the downregulation of miR-503 confers an invasive phenotype in lung cancer cells and provided in vivo evidence that miR-503 significantly inhibits metastasis. We found that miR-503 inversely regulates EMT, identified PTK7 as a novel miR-503 target, and showed the functional effects of miR-503 on cell migration and invasion were restored upon reconstitution of PTK7 expression. As PTK7 is a Wnt/planar cell polarity protein crucial for collective cell movement, these results implicated miR-503 in both EMT and collective migration. However, the expression of PTK7 did not influence EMT induction, suggesting that miR-503 regulates EMT through mechanisms other than PTK7 inhibition. Furthermore, we discovered that PTK7 mechanistically activates focal adhesion kinase (FAK) and paxillin, thereby controlling the reorganization of the cortical actin cytoskeleton. CONCLUSION: Collectively, miR-503 is capable of governing EMT and PTK7/FAK signaling independently to control the invasion and dissemination of lung cancer cells, indicating that miR-503 represents a pleiotropic regulator of cancer metastasis and hence a potential therapeutic target for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Animais , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Transdução de Sinais , Movimento Celular/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...