Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 180: 106630, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39208467

RESUMO

Spiking Neural Networks (SNNs) are naturally suited to process sequence tasks such as NLP with low power, due to its brain-inspired spatio-temporal dynamics and spike-driven nature. Current SNNs employ "repeat coding" that re-enter all input tokens at each timestep, which fails to fully exploit temporal relationships between the tokens and introduces memory overhead. In this work, we align the number of input tokens with the timestep and refer to this input coding as "individual coding". To cope with the increase in training time for individual encoded SNNs due to the dramatic increase in timesteps, we design a Bidirectional Parallel Spiking Neuron (BPSN) with following features: First, BPSN supports spike parallel computing and effectively avoids the issue of uninterrupted firing; Second, BPSN excels in handling adaptive sequence length tasks, which is a capability that existing work does not have; Third, the fusion of bidirectional information enhances the temporal information modeling capabilities of SNNs; To validate the effectiveness of our BPSN, we present the SNN-BERT, a deep direct training SNN architecture based on the BERT model in NLP. Compared to prior repeat 4-timestep coding baseline, our method achieves a 6.46× reduction in energy consumption and a significant 16.1% improvement, raising the performance upper bound of the SNN domain on the GLUE dataset to 74.4%. Additionally, our method achieves 3.5× training acceleration and 3.8× training memory optimization. Compared with artificial neural networks of similar architecture, we obtain comparable performance but up to 22.5× energy efficiency. We would provide the codes.

2.
Neural Netw ; 176: 106330, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38688068

RESUMO

Spiking neural networks (SNNs), as the brain-inspired neural networks, encode information in spatio-temporal dynamics. They have the potential to serve as low-power alternatives to artificial neural networks (ANNs) due to their sparse and event-driven nature. However, existing SNN-based models for pixel-level semantic segmentation tasks suffer from poor performance and high memory overhead, failing to fully exploit the computational effectiveness and efficiency of SNNs. To address these challenges, we propose the multi-scale and full spike segmentation network (MFS-Seg), which is based on the deep direct trained SNN and represents the first attempt to train a deep SNN with surrogate gradients for semantic segmentation. Specifically, we design an efficient fully-spike residual block (EFS-Res) to alleviate representation issues caused by spiking noise on different channels. EFS-Res utilizes depthwise separable convolution to improve the distributions of spiking feature maps. The visualization shows that our model can effectively extract the edge features of segmented objects. Furthermore, it can significantly reduce the memory overhead and energy consumption of the network. In addition, we theoretically analyze and prove that EFS-Res can avoid the degradation problem based on block dynamical isometry theory. Experimental results on the Camvid dataset, the DDD17 dataset, and the DSEC-Semantic dataset show that our model achieves comparable performance to the mainstream UNet network with up to 31× fewer parameters, while significantly reducing power consumption by over 13×. Overall, our MFS-Seg model demonstrates promising results in terms of performance, memory efficiency, and energy consumption, showcasing the potential of deep SNNs for semantic segmentation tasks. Our code is available in https://github.com/BICLab/MFS-Seg.


Assuntos
Redes Neurais de Computação , Semântica , Humanos , Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Aprendizado Profundo , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...