Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509454

RESUMO

Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.

2.
EMBO J ; 42(19): e113639, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37565504

RESUMO

WRKY transcription factors in plants are known to be able to mediate either transcriptional activation or repression, but the mechanism regulating their transcriptional activity is largely unclear. We found that group IId WRKY transcription factors interact with OBERON (OBE) proteins, forming redundant WRKY-OBE complexes in Arabidopsis thaliana. The coiled-coil domain of WRKY transcription factors binds to OBE proteins and is responsible for target gene selection and transcriptional repression. The PHD finger of OBE proteins binds to both histones and WRKY transcription factors. WRKY-OBE complexes repress the transcription of numerous stress-responsive genes and are required for maintaining normal plant growth. Several WRKY and OBE mutants show reduced plant size and increased drought tolerance, accompanied by increased expression of stress-responsive genes. Moreover, expression levels of most of these WRKY and OBE genes are reduced in response to drought stress, revealing a previously uncharacterized regulatory mechanism of the drought stress response. These results suggest that WRKY-OBE complexes repress transcription of stress-responsive genes, and thereby balance plant growth and stress tolerance.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Filogenia
4.
Nat Plants ; 9(3): 442-459, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36879016

RESUMO

Although a conserved SAGA complex containing the histone acetyltransferase GCN5 is known to mediate histone acetylation and transcriptional activation in eukaryotes, how to maintain different levels of histone acetylation and transcription at the whole-genome level remains to be determined. Here we identify and characterize a plant-specific GCN5-containing complex, which we term PAGA, in Arabidopsis thaliana and Oryza sativa. In Arabidopsis, the PAGA complex consists of two conserved subunits (GCN5 and ADA2A) and four plant-specific subunits (SPC, ING1, SDRL and EAF6). We find that PAGA and SAGA can independently mediate moderate and high levels of histone acetylation, respectively, thereby promoting transcriptional activation. Moreover, PAGA and SAGA can also repress gene transcription via the antagonistic effect between PAGA and SAGA. Unlike SAGA, which regulates multiple biological processes, PAGA is specifically involved in plant height and branch growth by regulating the transcription of hormone biosynthesis and response related genes. These results reveal how PAGA and SAGA cooperate to regulate histone acetylation, transcription and development. Given that the PAGA mutants show semi-dwarf and increased branching phenotypes without reduction in seed yield, the PAGA mutations could potentially be used for crop improvement.


Assuntos
Histona Acetiltransferases , Histonas , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Núcleo Celular/metabolismo , Plantas/genética , Transcrição Gênica , Desenvolvimento Vegetal , Acetilação
5.
Nat Plants ; 8(12): 1423-1439, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471048

RESUMO

Although SWI/SNF chromatin remodelling complexes are known to regulate diverse biological functions in plants, the classification, compositions and functional mechanisms of the complexes remain to be determined. Here we comprehensively characterized SWI/SNF complexes by affinity purification and mass spectrometry in Arabidopsis thaliana, and found three classes of SWI/SNF complexes, which we termed BAS, SAS and MAS (BRM-, SYD- and MINU1/2-associated SWI/SNF complexes). By investigating multiple developmental phenotypes of SWI/SNF mutants, we found that three classes of SWI/SNF complexes have both overlapping and specific functions in regulating development. To investigate how the three classes of SWI/SNF complexes differentially regulate development, we mapped different SWI/SNF components on chromatin at the whole-genome level and determined their effects on chromatin accessibility. While all three classes of SWI/SNF complexes regulate chromatin accessibility at proximal promoter regions, SAS is a major SWI/SNF complex that is responsible for mediating chromatin accessibility at distal promoter regions and intergenic regions. Histone modifications are related to both the association of SWI/SNF complexes with chromatin and the SWI/SNF-dependent chromatin accessibility. Three classes of SWI/SNF-dependent accessibility may enable different sets of transcription factors to access chromatin. These findings lay a foundation for further investigation of the function of three classes of SWI/SNF complexes in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/metabolismo , Cromatina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adenosina Trifosfatases/metabolismo
6.
J Integr Plant Biol ; 64(12): 2438-2454, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36354145

RESUMO

Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Glicosilases , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Regulação da Expressão Gênica de Plantas , Metiltransferases/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo
7.
Nucleic Acids Res ; 50(13): 7380-7395, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766439

RESUMO

Although previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering. The delayed-flowering phenotype is independent of photoperiod and can be overcome by vernalization, confirming that the complex specifically functions in the autonomous pathway. Chromatin immunoprecipitation combined with sequencing indicated that, in the AuPC mutants, the histone modifications (H3Ac, H3K4me3 and H3K36me3) associated with transcriptional activation are increased, and the histone modification (H3K27me3) associated with transcriptional repression is reduced, suggesting that the AuPC suppresses FLC expression at least partially by regulating these histone modifications. Moreover, we found that the AuPC component SDG26 associates with FLC chromatin via a previously uncharacterized DNA-binding domain and regulates FLC expression and flowering time independently of its histone methyltransferase activity. Together, these results provide a framework for understanding the molecular mechanism by which the autonomous pathway regulates flowering time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação
8.
J Integr Plant Biol ; 64(4): 901-914, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043580

RESUMO

Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.


Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Fotossíntese/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
New Phytol ; 233(2): 751-765, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724229

RESUMO

FLOWERING LOCUS M (FLM) is a well-known MADS-box transcription factor that is required for preventing early flowering under low temperatures in Arabidopsis thaliana. Alternative splicing of FLM is involved in the regulation of temperature-responsive flowering. However, how the basic transcript level of FLM is regulated is largely unknown. Here, we conducted forward genetic screening and identified a previously uncharacterized flowering repressor gene, UBA2c. Genetic analyses indicated that UBA2c represses flowering at least by promoting FLM transcription. We further demonstrated that UBA2c directly binds to FLM chromatin and facilitates FLM transcription by inhibiting histone H3K27 trimethylation, a histone marker related to transcriptional repression. UBA2c encodes a protein containing two putative RNA recognition motifs (RRMs) and one prion-like domain (PrLD). We found that UBA2c forms speckles in the nucleus and that both the RRMs and PrLD are required not only for forming the nuclear speckles but also for the biological function of UBA2c. These results identify a previously unknown flowering repressor and provide insights into the regulation of flowering time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Motivo de Reconhecimento de RNA
10.
Plant Cell ; 33(10): 3250-3271, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270751

RESUMO

In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metilação
11.
J Genet Genomics ; 48(5): 369-383, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34144927

RESUMO

The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes, but whether they form other types of complexes is unknown. Here, we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins, thereby forming three types of plant-specific histone deacetylase complexes, which we named SANT, ESANT, and ARID. RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes. HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation. We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and -independent mechanisms. In the mutants of histone deacetylase complexes, the expression of a number of stress-induced genes is up-regulated, and several mutants of the histone deacetylase complexes show severe retardation in growth. Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance, we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.


Assuntos
Arabidopsis/fisiologia , Histona Desacetilases/metabolismo , Complexos Multiproteicos/metabolismo , Estresse Fisiológico , Acetilação , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Desacetilases/genética , Histonas/metabolismo , Fenótipo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
12.
Mol Plant ; 14(7): 1071-1087, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737195

RESUMO

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation, gene expression, and various developmental processes in eukaryotes. However, little is known about the composition and function of the SAGA complex in plants. In this study, we found that the SAGA complex in Arabidopsis thaliana contains not only conserved subunits but also four plant-specific subunits: three functionally redundant paralogs, SCS1, SCS2A, and SCS2B (SCS1/2A/2B), and a TAF-like subunit, TAFL. Mutations in SCS1/2A/2B lead to defective phenotypes similar to those caused by mutations in the genes encoding conserved SAGA subunits HAG1 and ADA2B, including delayed juvenile-to-adult phase transition, late flowering, and increased trichome density. Furthermore, we demonstrated that SCS1/2A/2B are required for the function of the SAGA complex in histone acetylation, thereby promoting the transcription of development-related genes. These results together suggest that SCS1/2A/2B are core subunits of the SAGA complex in Arabidopsis. Compared with SAGA complexes in other eukaryotes, the SAGA complexes in plants have evolved unique features that are necessary for normal growth and development.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Subunidades Proteicas/análise , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade da Espécie
13.
J Integr Plant Biol ; 63(4): 787-802, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33433058

RESUMO

Trimethylated histone H3 lysine 27 (H3K27me3) is a repressive histone marker that regulates a variety of developmental processes, including those that determine flowering time. However, relatively little is known about the mechanism of how H3K27me3 is recognized to regulate transcription. Here, we identified BAH domain-containing transcriptional regulator 1 (BDT1) as an H3K27me3 reader. BDT1 is responsible for preventing flowering by suppressing the expression of flowering genes. Mutation of the H3K27me3 recognition sites in the BAH domain disrupted the binding of BDT1 to H3K27me3, leading to de-repression of H3K27me3-enriched flowering genes and an early-flowering phenotype. We also found that BDT1 interacts with a family of PHD finger-containing proteins, which we named PHD1-6, and with CPL2, a Pol II carboxyl terminal domain (CTD) phosphatase responsible for transcriptional repression. Pull-down assays showed that the PHD finger-containing proteins can enhance the binding of BDT1 to the H3K27me3 peptide. Mutations in all of the PHD genes caused increased expression of flowering genes and an early-flowering phenotype. This study suggests that the binding of BDT1 to the H3K27me3 peptide, which is enhanced by PHD proteins, is critical for preventing early flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética
14.
J Integr Plant Biol ; 63(4): 755-771, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33325122

RESUMO

In eukaryotes, MEDIATOR is a conserved multi-subunit complex that links transcription factors and RNA polymerase II and that thereby facilitates transcriptional initiation. Although the composition of MEDIATOR has been well studied in yeast and mammals, relatively little is known about the composition of MEDIATOR in plants. By affinity purification followed by mass spectrometry, we identified 28 conserved MEDIATOR subunits in Arabidopsis thaliana, including putative MEDIATOR subunits that were not previously validated. Our results indicated that MED34, MED35, MED36, and MED37 are not Arabidopsis MEDIATOR subunits, as previously proposed. Our results also revealed that two homologous CBP/p300 histone acetyltransferases, HAC1 and HAC5 (HAC1/5) are in fact plant-specific MEDIATOR subunits. The MEDIATOR subunits MED8 and MED25 (MED8/25) are partially responsible for the association of MEDIATOR with HAC1/5, MED8/25 and HAC1/5 co-regulate gene expression and thereby affect flowering time and floral development. Our in vitro observations indicated that MED8 and HAC1 form liquid-like droplets by phase separation, and our in vivo observations indicated that these droplets co-localize in the nuclear bodies at a subset of nuclei. The formation of liquid-like droplets is required for MED8 to interact with RNA polymerase II. In summary, we have identified all of the components of Arabidopsis MEDIATOR and revealed the mechanism underlying the link of histone acetylation and transcriptional regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Plantas Geneticamente Modificadas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
16.
Nat Plants ; 6(8): 942-956, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661276

RESUMO

The DNA methyltransferases MET1 and CMT3 are known to be responsible for maintenance of DNA methylation at symmetric CG and CHG sites, respectively, in Arabidopsis thaliana. However, it is unknown how the expression of methyltransferase genes is regulated in different cell states and whether change in expression affects DNA methylation at the whole-genome level. Using a reverse genetic screen, we identified TCX5, a tesmin/TSO1-like CXC domain-containing protein, and demonstrated that it is a transcriptional repressor of genes required for maintenance of DNA methylation, which include MET1, CMT3, DDM1, KYP and VIMs. TCX5 functions redundantly with its paralogue TCX6 in repressing the expression of these genes. In the tcx5 tcx6 double mutant, expression of these genes is markedly increased, thereby leading to markedly increased DNA methylation at CHG sites and, to a lesser extent, at CG sites at the whole-genome level. Furthermore, our whole-genome DNA methylation analysis indicated that the CG and CHG methylation level is lower in differentiated quiescent cells than in dividing cells in the wild type but is comparable in the tcx5/6 mutant, suggesting that TCX5/6 are required for maintenance of the difference in DNA methylation between the two cell types. We identified TCX5/6-containing multi-subunit complexes, which are known as DREAM in other eukaryotes, and demonstrated that the Arabidopsis DREAM components function as a whole to preclude DNA hypermethylation. Given that the DREAM complexes are conserved from plants to animals, the preclusion of DNA hypermethylation by DREAM complexes may represent a conserved mechanism in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Metilação de DNA , Genes de Plantas , Fatores Genéricos de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proliferação de Células , Genética Reversa/métodos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Fatores Genéricos de Transcrição/fisiologia
17.
Plant Cell ; 32(7): 2178-2195, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358072

RESUMO

Chromatin remodeling and histone modifications are important for development and floral transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of Imitation Switch (ISWI) chromatin-remodeling complexes in Arabidopsis (Arabidopsis thaliana). We found that AT-RICH INTERACTING DOMAIN5 (ARID5), a subunit of a plant-specific ISWI complex, can regulate development and floral transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral transition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos
18.
EMBO J ; 39(7): e102008, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115743

RESUMO

Deposition of H2A.Z in chromatin is known to be mediated by a conserved SWR1 chromatin-remodeling complex in eukaryotes. However, little is known about whether and how the SWR1 complex cooperates with other chromatin regulators. Using immunoprecipitation followed by mass spectrometry, we found all known components of the Arabidopsis thaliana SWR1 complex and additionally identified the following three classes of previously uncharacterized plant-specific SWR1 components: MBD9, a methyl-CpG-binding domain-containing protein; CHR11 and CHR17 (CHR11/17), ISWI chromatin remodelers responsible for nucleosome sliding; and TRA1a and TRA1b, accessory subunits of the conserved NuA4 histone acetyltransferase complex. MBD9 directly interacts with CHR11/17 and the SWR1 catalytic subunit PIE1, and is responsible for the association of CHR11/17 with the SWR1 complex. MBD9, TRA1a, and TRA1b function as canonical components of the SWR1 complex to mediate H2A.Z deposition. CHR11/17 are not only responsible for nucleosome sliding but also involved in H2A.Z deposition. These results indicate that the association of the SWR1 complex with CHR11/17 may facilitate the coupling of H2A.Z deposition with nucleosome sliding, thereby co-regulating gene expression, development, and flowering time.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Histona Acetiltransferases/metabolismo , Nucleossomos/metabolismo , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo
19.
Sci Rep ; 10(1): 3094, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080227

RESUMO

Involvement of long non-coding RNAs (lncRNAs) in the regulation of gene expression in cis has been well studied in eukaryotes but relatively little is known whether and how lncRNAs affect gene expression in tans. In Arabidopsis thaliana, COLDAIR, a previously reported lncRNA, is produced from the first intron of FLOWERING LOCUS C (FLC), which encodes a repressor of flowering time. Our results indicated that the exogenously overexpressed COLDAIR enhances the expression of FLC in trans, resulting in a late-flowering phenotype. In 35S-COLDAIR lines, the enhanced expression of FLC is correlated with the down-regulation of the repressive histone mark H3K27me3 and with the up-regulation of the active histone mark H3K4me3 at the FLC chromatin. Furthermore, we demonstrated that overexpression of intronic lncRNAs from several other H3K27me3-enriched MADS-box genes also activates the expression of their host genes. This study suggests that the involvement of overexpressed intronic lncRNAs in gene activation may be conserved in H3K27me3-enriched genes in eukaryotes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Código das Histonas , Histonas/química , RNA Longo não Codificante/genética , Arabidopsis/fisiologia , Regulação para Baixo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Histonas/genética , Íntrons , Proteínas de Domínio MADS/genética , Peptídeos/química , Fenótipo , RNA de Plantas/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...