Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ann Lab Med ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699793

RESUMO

Background: Quantitative detection of glucose-6-phosphate dehydrogenase (G6PD) is commonly done to screen for G6PD deficiency. However, current reference intervals (RIs) of G6PD are unsuitable for evaluating G6PD-activity levels with local populations or associating G6PD variants with hemolysis risk to aid clinical decision-making. We explored appropriate RIs and clinical decision limits (CDLs) for G6PD activity in individuals from Guangzhou, China. Methods: We enrolled 5,852 unrelated individuals between 2020 and 2022 and screened their samples in quantitative assays for G6PD activity. We conducted further investigations, including G6PD genotyping, thalassemia genotyping, follow-up analysis, and statistical analysis, for different groups. Results: In Guangzhou, the RIs for the G6PD activities were 11.20-20.04 U/g Hb in male and 12.29-23.16 U/g Hb in female. The adjusted male median and normal male median (NMM) values were 15.47 U/g Hb and 15.51 U/g Hb, respectively. A threshold of 45% of the NMM could be used as a CDL to estimate the probability of G6PD variants. Our results revealed high hemolysis-risk CDLs (male: <10% of the NMM, female: <30% of the NMM), medium hemolysis-risk CDLs (male: 10%-45% of the NMM, female: 30%-79% of the NMM), and low hemolysis-risk CDLs (male: ≥ 45% of the NMM, female: ≥ 79% of the NMM). Conclusions: Collectively, our findings contribute to a more accurate evaluation of G6PD-activity levels within the local population and provide valuable insights for clinical decision-making. Specifically, identifying threshold values for G6PD variants and hemolysis risk enables improved prediction and management of G6PD deficiency, ultimately enhancing patient care and treatment outcomes.

2.
Front Microbiol ; 14: 1230274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901819

RESUMO

Microbial Enhanced Oil Recovery (MEOR) is an option for recovering oil from depleted reservoirs. Numerous field trials of MEOR have confirmed distinct microbial community structure in diverse production wells within the same block. The variance in the reservoir microbial communities, however, remains ambiguously documented. In this study, an 8 m long core microbial flooding simulation device was built on a laboratory scale to study the dynamic changes of the indigenous microbial community structure in the Qizhong Block, Xinjiang oil field. During the MEOR, there was an approximate 34% upswing in oil extraction. Based on the 16S rRNA gene high-throughput sequencing, our results indicated that nutrition was one of the factors affecting the microbial communities in oil reservoirs. After the introduction of nutrients, hydrocarbon oxidizing bacteria became active, followed by the sequential activation of facultative anaerobes and anaerobic fermenting bacteria. This was consistent with the hypothesized succession of a microbial ecological "food chain" in the reservoir, which preliminarily supported the two-step activation theory for reservoir microbes transitioning from aerobic to anaerobic states. Furthermore, metagenomic results indicated that reservoir microorganisms had potential functions of hydrocarbon degradation, gas production and surfactant production. Understanding reservoir microbial communities and improving oil recovery are both aided by this work.

3.
J Hazard Mater ; 460: 132397, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639797

RESUMO

The investigation of hydrocarbon degradation potential of environmental microorganisms is an important research topic, whether for the global carbon cycle or oil pollution remediation. Under aerobic conditions, the microorganisms employ a range of monooxygenases to use hydrocarbons substrates as a source of carbon and energy. With the explosion of sequencing data, mining genes in genomes or metagenomes has become computationally expensive and time-consuming. We proposed the HMDB, which is a professional gene database of hydrocarbon monooxygenases. HMDB contains 38 genes, which encode 11 monooxygenases responsible for the hydroxylation of 8 hydrocarbons. To reduce false positives, the strategy of using homologous genes as background noise was applied for HMDB. We added 10,095 gene sequences of homologous enzymes which took non-hydrocarbons as substrates to HMDB. The classic BLAST method and best-hit strategy were recommended for HMDB usage, but not limited. The performance of HMDB was validated using 264,402 prokaryote genomes from RefSeq and 51 metagenomes from SRA. The results showed that HMDB database had high sensitivity and low false positive rate. We release the HMDB database here, hoping to speed up the process for investigation of hydrocarbon monooxygenases in massive metagenomic data. HMDB is freely available at http://www.orgene.net/HMDB/.


Assuntos
Carbono , Recuperação e Remediação Ambiental , Ciclo do Carbono , Bases de Dados Factuais , Hidrocarbonetos , Oxigenases de Função Mista/genética
4.
J Hazard Mater ; 443(Pt A): 130210, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308930

RESUMO

Heavy oil has hindered crude oil exploitation and pollution remediation due to its high density and viscosity. Bioemulsifiers efficiently facilitate the formation and stabilization of oil-in-water emulsions in low concentrations thus eliminating the above bottleneck. Despite their potential benefits, various obstacles had still impeded the practical applications of bioemulsifiers, including high purification costs and poor adaptability to extreme environments such as high temperature and oxygen deficiency. Herein, thermophilic facultative anaerobic Geobacillus thermodenitrificans NG80-2 was proved capable of emulsifying heavy oils and reducing their viscosity. An exocelluar bioemulsifier could be produced by NG80-2 using low-cost lignocellulose components as carbon sources even under anaerobic condition. The purified bioemulsifier was proved to be polysaccharide-protein complexes, and both components contributed to its emulsifying capability. In addition, it displayed excellent stress tolerance over wide ranges of temperatures, salinities, and pHs. Meanwhile, the bioemulsifier significantly improved oil recovery and degradation efficiency. An eps gene cluster for polysaccharide biosynthesis and genes for the covalently bonded proteins was further certificated. Therefore, the bioemulsifier produced by G. thermodenitrificans NG80-2 has immense potential for applications in bioremediation and EOR, and its biosynthesis pathway revealed here provides a theoretical basis for increasing bioemulsifier output.


Assuntos
Emulsificantes , Óleos , Biomassa , Anaerobiose , Emulsificantes/metabolismo , Polissacarídeos
5.
Front Microbiol ; 13: 932269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966672

RESUMO

Salt tolerance is one of the most important problems in the field of environmental governance and restoration. Among the various sources of factors, except temperature, salinity is a key factor that interrupts bacterial growth significantly. In this regard, constant efforts are made for the development of salt-tolerant strains, but few strains with salt tolerance, such as Terribacillus saccharophilus, were found, and there are still few relevant reports about their salt tolerance from complete genomic analysis. Furthermore, with the development of the economy, environmental pollution caused by oil exploitation has attracted much attention, so it is crucial to find the bacteria from T. saccharophilus which could degrade petroleum hydrocarbon even under high-salt conditions. Herein, one T. saccharophilus strain named ZY-1 with salt tolerance was isolated by increasing the salinity on LB medium step by step with reservoir water as the bacterial source. Its complete genome was sequenced, which was the first report of the complete genome for T. saccharophilus species with petroleum hydrocarbon degradation and emulsifying properties. In addition, its genome sequences were compared with the other five strains that are from the same genus level. The results indicated that there really exist some differences among them. In addition, some characteristics were studied. The salt-tolerant strain ZY-1 developed in this study and its emulsification and degradation performance of petroleum hydrocarbons were studied, which is expected to widely broaden the research scope of petroleum hydrocarbon-degrading bacteria in the oil field environment even in the extreme environment. The experiments verified that ZY-1 could significantly grow not only in the salt field but also in the oil field environment. It also demonstrated that the developed salt-tolerant strain can be applied in the petroleum hydrocarbon pollution field for bioremediation. In addition, we expect that the identified variants which occurred specifically in the high-salt strain will enhance the molecular biological understanding and be broadly applied to the biological engineering field.

6.
Bioinformatics ; 38(11): 3106-3108, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35460223

RESUMO

SUMMARY: Temperature is very important for the growth of microorganisms. Appropriate temperature conditions can improve the possibility for isolation of currently uncultured microorganisms. The development of metagenomic binning technology had dramatically increased the availability of genomic information of prokaryotes, providing convenience to infer the optimal growth temperature (OGT). Here, we proposed CnnPOGTP, a predictor for OGTs of prokaryotes based on deep learning method using only k-mers distribution derived from genomic sequence. This method was annotation free, and the predicted OGT could be obtained by simply providing the genome sequence to the CnnPOGTP website. AVAILABILITY AND IMPLEMENTATION: http://www.orgene.net/CnnPOGTP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Análise de Sequência de DNA , Temperatura , Genômica , Metagenoma
7.
Sci Total Environ ; 821: 153564, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101516

RESUMO

Microbes in subsurface oil reservoirs play important roles in elemental cycles and biogeochemical processes. However, the community assembly pattern of indigenous microbiome and their succession under long-term human activity remain poorly understood. Here we studied the microbial community assembly in underground sandstone cores from 190 to 2050 m in northeast China and their response to long-term oil recovery (10-50 years). Indigenous microbiome in subsurface petroleum reservoirs were dominated by Gammaproteobacteria, Firmicutes, Alphaproteobacteria, Bacteroidetes, and Actinobacteria, which exhibited a higher contribution of homogenizing dispersal assembly and different taxonomy distinct ecological modules when compared with perturbed samples. Specifically, the long-term oil recovery reduced the bacterial taxonomic- and functional-diversity, and increased the community co-occurrence associations in subsurface oil reservoirs. Moreover, distinguished from the perturbed samples, both variation partition analysis and structural equation model revealed that the contents of quartz, NO3- and Cl- significantly structured the α- and ß-diversity in indigenous subsurface bacterial communities. These findings first provide the holistic picture of microbiome in the deep oil reservoirs, which demonstrate the significant impact of human activity on microbiome in deep continental subsurface.


Assuntos
Gammaproteobacteria , Microbiota , Petróleo , Bactérias/genética , Humanos , Campos de Petróleo e Gás , Petróleo/microbiologia , RNA Ribossômico 16S
8.
Front Cell Dev Biol ; 9: 723103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650975

RESUMO

Background: Immune checkpoint inhibitors have been successfully used in a variety of tumors, however, the efficacy of immune checkpoint blockade therapy for patients with glioma is limited. In this study, we tried to clarify gene expression signatures related to the prognosis of gliomas and construct a signature to predict the survival of patients with gliomas. Methods: Calcium-related differential expressed genes (DEGs) between gliomas and normal brain tissues were comprehensively analyzed in two independent databases. Univariate, multivariate Cox regression analysis and proportional hazards model were used to identify the prognostic of calcium-related risk score signature. The CIBERSORT algorithm and association analysis were carried out to evaluate the relationship between calcium-related signature and characteristic clinical features, tumor-infiltrating immune cell signatures as well as immune checkpoint molecules in glioma. A nomogram model was developed for predicting the overall survival for patients with gliomas. Results: We found the intersection of 415 DEGs between gliomas and normal brain tissues, and identified that an eighteen calcium-related gene panel was significantly enriched in these DEGs. A calcium-related signature derived risk score was developed to divide patients into high- and low-risk groups. Low levels of calcium-related gene expression in high-risk score cases were accompanied with worse outcomes of patients. Calcium-related risk scores were significantly associated with characteristic clinical features, immune infiltrating signatures of tumor microenvironment, and exhausted T cell markers including programmed cell death 1 (PD-1), lymphocyte activating 3 (LAG3), and T cell membrane protein 3 (TIM-3), which contribute to an adverse therapeutic effect of immunotherapy. Calcium-related signature risk score was considered as an independent prognostic parameter to predict the of overall survival of patients with gliomas in nomogram model. Conclusion: Our study demonstrated that calcium signaling pathway is highly associated with immunosuppression of gliomas and overall survival of patients. Targeting the calcium signaling pathway might be a new strategy to reverse the immunosuppressive microenvironment of gliomas and improve the efficacy of glioma immunotherapy.

9.
Microorganisms ; 10(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35056515

RESUMO

The genome of Exiguobacterium aurantiacum SW-20 (E. aurantiacum SW-20), a salt-tolerant microorganism with petroleum hydrocarbon-degrading ability isolated from the Changqing Oilfield, was sequenced and analyzed. Genomic data mining even comparative transcriptomics revealed that some genes existed in SW-20 might be related to the salt tolerance. Besides, genes related to petroleum hydrocarbon degradation discovered in genomic clusters were also found in the genome, indicating that these genes have a certain potential in the bioremediation of petroleum pollutants. Multiple natural product biosynthesis gene clusters were detected, which was critical for survival in the extreme conditions. Transcriptomic studies revealed that some genes were significantly up-regulated as salinity increased, implying that these genes might be related to the salt tolerance of SW-20 when living in a high salt environment. In our study, gene clusters including salt tolerance, heavy metal tolerance and alkane degradation were all compared. When the same functional gene clusters from different strains, it was discovered that the gene composition differed. Comparative genomics and in-depth analysis provided insights into the physiological features and adaptation strategies of E. aurantiacum SW-20 in the oilfield environment. Our research increased the understanding of niches adaption of SW-20 at genomic level.

10.
Anal Chim Acta ; 1050: 44-50, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661590

RESUMO

In this study, both electricity generation capability and biodegradation process of carboxymethyl cellulose (CMC) were investigated using a defined ternary culture of Paenibacillus sp., Klebsiella sp. and Geobacter sulfurreducens as biocatalysts in MFCs. The maximum current density achieved by the ternary culture from CMC was 621 ±â€¯23 µA cm-2 in half-cell experiments and the maximum power density reached to 1146 ±â€¯28 mW m-2 in two-chamber MFCs. Meanwhile, the ternary culture also possessed three times higher CMC degradation capability compared to the pure strain J1. Besides, the key metabolite products, including cellobiose, glucose, acetate, were quantified by high performance liquid chromatography (HPLC) to illustrate the biodegradation process of CMC. The high electricity generation performance mainly resulted from the "division-of-labor" based cooperation and the enhanced extracellular electron transfer caused by the electron shuttle secreted by Klebsiella sp. This study highlighted the synergistic effect of specific community on electricity generation using CMC as carbon source, and laid the foundation for further optimization of more efficient and stable microbial consortia for bioenergy applications.


Assuntos
Fontes de Energia Bioelétrica , Celulose/metabolismo , Geobacter/metabolismo , Biocatálise , Celulose/química , Eletricidade , Geobacter/química , Klebsiella/química , Klebsiella/metabolismo , Paenibacillus/química , Paenibacillus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...