Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8921, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637615

RESUMO

Durability is one of the technical bottlenecks restricting fuel cell electric vehicle development. As a result, significant time and resources have been invested in research related to this area worldwide. Current durability research mainly focuses on the single cell and stack levels, which is quite different from the usage scenarios of actual vehicles. There is almost no research on developing durability test cycles on the fuel cell system level. This paper proposes a universal model for developing a durability test cycle for fuel cell system based on the China automotive test cycle. Large-scale comparison tests of the fuel cell systems are conducted. After 1000 h test, the output performance degradation of three mass-produced fuel cell system is 14.49%, 9.59%, and 4.21%, respectively. The test results show that the durability test cycle proposed in this paper can effectively accelerate the durability test of the fuel cell system and evaluate the durability performance of the fuel cell system. Moreover, the methodology proposed in this paper could be used in any other test cycles such as NEDC (New European Driving Cycle), WLTC (Worldwide Harmonized Light Vehicles Test Procedure), etc. And it has comprehensive application value and are significant for reducing the cost of durability testing of fuel cell systems and promoting the industrialization of fuel cell electric vehicles.

2.
J Hazard Mater ; 468: 133785, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367441

RESUMO

BACKGROUND: Although growing evidence has shown independent links of long-term exposure to fine particulate matter (PM2.5) with cognitive impairment, the effects of its constituents remain unclear. This study aims to explore the associations of long-term exposure to ambient PM2.5 constituents' mixture with cognitive impairment in Chinese older adults, and to further identify the main contributor. METHODS: 15,274 adults ≥ 65 years old were recruited by the Chinese Longitudinal Healthy Longevity Study (CLHLS) and followed up through 7 waves during 2000-2018. Concentrations of ambient PM2.5 and its constituents (i.e., black carbon [BC], organic matter [OM], ammonium [NH4+], sulfate [SO42-], and nitrate [NO3-]) were estimated by satellite retrievals and machine learning models. Quantile-based g-computation model was employed to assess the joint effects of a mixture of 5 PM2.5 constituents and their relative contributions to cognitive impairment. Analyses stratified by age group, sex, residence (urban vs. rural), and region (north vs. south) were performed to identify vulnerable populations. RESULTS: During the average 3.03 follow-up visits (89,296.9 person-years), 4294 (28.1%) participants had developed cognitive impairment. The adjusted hazard ratio [HR] (95% confidence interval [CI]) for cognitive impairment for every quartile increase in mixture exposure to 5 PM2.5 constituents was 1.08 (1.05-1.11). BC held the largest index weight (0.69) in the positive direction in the qg-computation model, followed by OM (0.31). Subgroup analyses suggested stronger associations in younger old adults and rural residents. CONCLUSION: Long-term exposure to ambient PM2.5, particularly its constituents BC and OM, is associated with an elevated risk of cognitive impairment onset among Chinese older adults.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Disfunção Cognitiva , Humanos , Idoso , Material Particulado/toxicidade , Estudos de Coortes , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/epidemiologia , China/epidemiologia , Poluição do Ar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...