Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(11): e23738, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38855924

RESUMO

Maternal nutrition contributes to gene-environment interactions that influence susceptibility to common congenital anomalies such as neural tube defects (NTDs). Supplemental myo-inositol (MI) can prevent NTDs in some mouse models and shows potential for prevention of human NTDs. We investigated effects of maternal MI intake on embryonic MI status and metabolism in curly tail mice, which are genetically predisposed to NTDs that are inositol-responsive but folic acid resistant. Dietary MI deficiency caused diminished MI in maternal plasma and embryos, showing that de novo synthesis is insufficient to maintain MI levels in either adult or embryonic mice. Under normal maternal dietary conditions, curly tail embryos that developed cranial NTDs had significantly lower MI content than unaffected embryos, revealing an association between diminished MI status and failure of cranial neurulation. Expression of inositol-3-phosphate synthase 1, required for inositol biosynthesis, was less abundant in the cranial neural tube than at other axial levels. Supplemental MI or d-chiro-inositol (DCI) have previously been found to prevent NTDs in curly tail embryos. Here, we investigated the metabolic effects of MI and DCI treatments by mass spectrometry-based metabolome analysis. Among inositol-responsive metabolites, we noted a disproportionate effect on nucleotides, especially purines. We also found altered proportions of 5-methyltetrahydrolate and tetrahydrofolate in MI-treated embryos suggesting altered folate metabolism. Treatment with nucleotides or the one-carbon donor formate has also been found to prevent NTDs in curly tail embryos. Together, these findings suggest that the protective effect of inositol may be mediated through the enhanced supply of nucleotides during neural tube closure.


Assuntos
Inositol , Defeitos do Tubo Neural , Inositol/metabolismo , Inositol/farmacologia , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/prevenção & controle , Animais , Feminino , Camundongos , Gravidez , Embrião de Mamíferos/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Metaboloma , Ácido Fólico/metabolismo
2.
Sci Adv ; 8(51): eadc8753, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542703

RESUMO

Salivary gland acinar cells are severely depleted after radiotherapy for head and neck cancer, leading to loss of saliva and extensive oro-digestive complications. With no regenerative therapies available, organ dysfunction is irreversible. Here, using the adult murine system, we demonstrate that radiation-damaged salivary glands can be functionally regenerated via sustained delivery of the neurogenic muscarinic receptor agonist cevimeline. We show that endogenous gland repair coincides with increased nerve activity and acinar cell division that is limited to the first week after radiation, with extensive acinar cell degeneration, dysfunction, and cholinergic denervation occurring thereafter. However, we found that mimicking cholinergic muscarinic input via sustained local delivery of a cevimeline-alginate hydrogel was sufficient to regenerate innervated acini and retain physiological saliva secretion at nonirradiated levels over the long term (>3 months). Thus, we reveal a previously unknown regenerative approach for restoring epithelial organ structure and function that has extensive implications for human patients.

3.
Dev Cell ; 57(22): 2550-2565.e5, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413949

RESUMO

Acinar cells are the principal secretory units of multiple exocrine organs. A single-cell, layered, lumenized acinus forms from a large cohort of epithelial progenitors that must initiate and coordinate three cellular programs of acinar specification, namely, lineage progression, secretion, and polarization. Despite this well-known outcome, the mechanism(s) that regulate these complex programs are unknown. Here, we demonstrate that neuronal-epithelial cross-talk drives acinar specification through neuregulin (NRG1)-ERBB3-mTORC2 signaling. Using single-cell and global RNA sequencing of developing murine salivary glands, we identified NRG1-ERBB3 to precisely overlap with acinar specification during gland development. Genetic deletion of Erbb3 prevented cell lineage progression and the establishment of lumenized, secretory acini. Conversely, NRG1 treatment of isolated epithelia was sufficient to recapitulate the development of secretory acini. Mechanistically, we found that NRG1-ERBB3 regulates each developmental program through an mTORC2 signaling pathway. Thus, we reveal that a neuronal-epithelial (NRG1/ERBB3/mTORC2) mechanism orchestrates the creation of functional acini.


Assuntos
Neurregulinas , Transdução de Sinais , Humanos , Camundongos , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina , Células Acinares , Transporte Biológico , Neuregulina-1 , Receptor ErbB-3
4.
Dis Model Mech ; 12(11)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31636139

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide, but their underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, despite widespread use of folic acid supplements and implementation of food fortification in many countries, the protective mechanism is unclear. Pax3 mutant (splotch; Sp2H ) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor that inhibition of apoptosis could prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state, allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates and were not prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S to G2 phase, specifically in the Pax3 mutant dorsal neuroepithelium. We propose that the cell-cycle-promoting effect of folic acid compensates for the loss of Pax3 and thereby prevents cranial NTDs.


Assuntos
Ácido Fólico/administração & dosagem , Mutação , Defeitos do Tubo Neural/etiologia , Fator de Transcrição PAX3/genética , Animais , Apoptose , Ciclo Celular/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos CBA , Defeitos do Tubo Neural/prevenção & controle , Fator de Transcrição PAX3/fisiologia
5.
Genesis ; 57(1): e23282, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30628162

RESUMO

Organs and structures of the vertebrate head perform a plethora of tasks including visualization, digestion, vocalization/communication, auditory functions, and respiration in response to neuronal input. This input is primarily derived from afferent and efferent fibers of the cranial nerves (sensory and motor respectively) and efferent fibers of the cervical sympathetic trunk. Despite their essential contribution to the function and integration of processes necessary for survival, how organ innervation is established remains poorly understood. Furthermore, while it has been appreciated for some time that innervation of organs by cranial nerves is regulated in part by secreted factors and cell surface ligands expressed by those organs, whether nerves also regulate the development of facial organs is only beginning to be elucidated. This review will provide an overview of cranial nerve development in relation to the organs they innervate, and outline their known contributions to craniofacial development, thereby providing insight into how nerves may shape the organs they innervate during development. Throughout, the interaction between different cell and tissue types will be highlighted.


Assuntos
Nervos Cranianos/embriologia , Morfogênese , Crista Neural/embriologia , Animais , Humanos , Crânio/embriologia
6.
Cell Rep ; 21(7): 1795-1808, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141214

RESUMO

Abnormal folate one-carbon metabolism (FOCM) is implicated in neural tube defects (NTDs), severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure in mouse embryos. Similarly, the inability to use glycine as a one-carbon donor to the folate cycle causes NTDs in glycine decarboxylase (Gldc)-deficient embryos. However, analysis of Mthfr-null mouse embryos shows that neither S-adenosylmethionine abundance nor neural tube closure depend on one-carbon units derived from embryonic or maternal folate cycles. Mthfr deletion or methionine treatment prevents NTDs in Gldc-null embryos by retention of one-carbon units within the folate cycle. Overall, neural tube closure depends on the activity of both the methionine and folate cycles, but transfer of one-carbon units between the cycles is not necessary.


Assuntos
Ácido Fólico/metabolismo , Metionina/metabolismo , Defeitos do Tubo Neural/metabolismo , Tubo Neural/metabolismo , Animais , Feminino , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Tubo Neural/embriologia , Defeitos do Tubo Neural/genética
7.
Cell ; 169(3): 442-456.e18, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431245

RESUMO

Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.


Assuntos
Antineoplásicos/metabolismo , Escherichia coli/metabolismo , Fluoruracila/metabolismo , Microbioma Gastrointestinal , Animais , Autofagia , Caenorhabditis elegans , Morte Celular , Neoplasias Colorretais/tratamento farmacológico , Dieta , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Modelos Animais , Pentosiltransferases/genética
8.
Biochimie ; 126: 63-70, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26924399

RESUMO

The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs.


Assuntos
Ácido Fólico/metabolismo , Formiatos/farmacologia , Nucleotídeos/biossíntese , Disrafismo Espinal , Animais , Modelos Animais de Doenças , Camundongos , Disrafismo Espinal/metabolismo , Disrafismo Espinal/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...