Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723488

RESUMO

Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.


Assuntos
Bacillus , Cádmio , Bacillus/metabolismo , Bacillus/genética , Cádmio/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/microbiologia , Biodegradação Ambiental , Adsorção
2.
PLoS One ; 18(2): e0279828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800331

RESUMO

The current research was conducted at Vermi-tech Unit, Muzaffarabad in 2018 to evaluate the efficacy of cow dung and vermicompost on seed sprouting, seedlings, and vegetative developmental parameters of Viola x wittrokiana (pansy). In the current study, vermicompost was produced using Eisenia fetida. Physicochemical parameters of vermicompost and organic manure were recorded before each experimentation. The potting experiment was designed and comprised of eight germination mediums containing different combinations of soil, sand, cow dung, and various concentrations of vermicompost such as 10% VC, 15% VC, 20% VC, 25% VC, 30% VC, and 35% VC. Seed sprouting and seedling developmental parameters were observed for 28 days while vegetative plant growth parameters were recorded after 10 weeks of transplantation in various vermicompost amended germination media. Pre and post-physicochemical analysis of germination media were also recorded to check their quality and permanency. The current findings showed that 30% VC germination media was an effective dose for early seed germination initiation and all seed germination parameters. However, the significant vegetative plant growth and flowering parameters of pansy occurred at 35% VC. Findings revealed that vermicompost not only enhanced the seed germination and growth of pansy but also improved soil health. These results indicate that vermicompost can be exploited as a potent bio-fertilizer for ornamental plant production.


Assuntos
Oligoquetos , Viola , Animais , Feminino , Bovinos , Fezes/química , Sementes , Esterco/análise , Solo
3.
Scientifica (Cairo) ; 2022: 5831832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979342

RESUMO

Agriculture is the economic backbone of Pakistan. 67% of country's population resides in rural areas and primarily depends on agriculture. Pakistan's soils are poor in OM and have a low C : N ratio, and the overall fertility status is insufficient to support increased crop yields. Compost is an excellent alternative solution for improving soil OM content. However, this excellent alternative supply in Pakistan has yet to be used. Mass volumes of leaves, grass clippings, plant stalks, vines, weeds, twigs, and branches are burned daily. In this study, different compost piles (P1, P2, and P3) of compost were made using different agricultural and animal waste combinations to assess temperature, pH, and NPK. Results revealed that P3 demonstrated the most successful composting procedure. The temperature and pH levels throughout the composting process were determined in a specified range of 42-45oC and 6.1-8.3, respectively. Total nitrogen content ranged from 81.5 to 2175 ppm in farm compost. Total phosphorus concentrations range from 1.33 to 13.98 ppm, and potassium levels, on the other hand, range from 91.53 to 640 ppm in farm compost. The overall nitrogen concentration grew progressively between each pile at the end of a week. The varied concentrations revealed that adding various forms of agricultural waste would result in a variation in the quantity of NPK owing to microbial activity. On-farm composting has emerged as an effective technique for the sustainability of agricultural activities, capable of resolving crucial problems like crop residues and livestock waste disposal. Based on this study's results, the pile (P3) combination shows the best NPK value performance and is recommended for agricultural uses to overcome the OM deficiency.

4.
Saudi J Biol Sci ; 28(4): 2316-2322, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911946

RESUMO

The usage of novel Plant Growth-Promoting Rhizobacteria (PGPR) as bioinoculant is a good opportunity for ecological farming practices to improve soil condition, quality of grain, crops' yield and biodiversity conservation. The purpose of recent research was focused to examine, isolate and characterize PGP bacteria that colonize the rhizosphere for the duration of the maize plant's seedling. For this purpose, 14 samples of soils and roots in the maize rhizosphere were collected from rock phosphate area of Hazara, Pakistan. Forty morphologically natural bacterial colonies have been extracted and tested for their PGP innovations and biocontrol residences and further recognized as plant production advancing rhizobacteria. To find the effective PGPR strains with numerous activities, an aggregate of 150 bacterial colonies were sequestered from different rhizospheric soils of the Hazara Pakistan rock phosphate area. These tested bacterial strains were subjected to biochemical description and in vitro screening for their plant growth-promoting qualities like generation of indole acetic acid (IAA), alkali (NH3), hydrogen cyanide (HCN), siderophores, catalases, proteases and pectinases. All the isolates of rhizobacteria showed IAA producing capacity, as well as found positive for catalase and HCN. The above results suggested that, in addition to biocontrol marketers, PGPR could be used as biofertilizers to substitute agro-chemicals in order to increase crop production. These microorganisms can therefore be further developed and used for greenhouse and discipline packages.

5.
Microsc Res Tech ; 84(7): 1522-1530, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33608993

RESUMO

Advanced research, development, and application of silver nanoparticles is proceeding in recent times due to their incredible utilization in various fields. Present study was focused on the production, characterization, and antifungal activities of silver nanoparticles (AgNPs). An environment friendly extracellular biosynthetic approach was adopted to produce the AgNPs by using bacteria, fungi, and sugarcane husk. Agents used for reduction of silver to nanoparticles were taken from culture filtrate of plant growth promoting bacteria, Fusarium oxysporum and supernatant extract of sugarcane husk. Nanoparticles were also characterized by scanning electron microscopy (SEM). Synthesis of colloidal AgNPs was observed by UV-Visible diffused reflectance spectroscopy (UV-Vis DRS). Primary peak of surface plasmon resonance band was noticed around 339.782, 336.735, and 338.258 nm for bacterial, fungal, and sugarcane husk produced AgNPs. Structure of all biologically produced nanoparticles were crystalline cubic with nano size of 45.41, 49.06, and 42.75 nm for bacterial, fungal, and sugarcane husk-based nanoparticles, respectively as calculated by Debye-Scherrer equation using XRD. Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of various compounds that aid in the reduction, capping, and stability of AgNPs. The antifungal activity of AgNPs was also investigated for sugarcane fungal pathogens Colletotricum falcatum and Fusarium moniliforme. All nanoparticles exhibit prominent antifungal activities. Maximum zone of fungal inhibition was noticed about 18, 19, and 21 mm for C. falcatum while 21, 20, and 24 mm for F. moniliforme in case of bacterial, fungal, and plant-based nanoparticles (15 ppm), respectively. Best fungal inhibition was observed under application of sugarcane husk based AgNPs. Moreover, biologically produced AgNPs responded better towards the suppression of F. moniliforme in comparison to C. falcatum. Mentioned sources in present study can be ecofriendly nano-factories for biosynthesis of AgNPs and mankind should benefit from their commercial application.


Assuntos
Nanopartículas Metálicas , Saccharum , Antibacterianos , Fusarium , Extratos Vegetais , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Ecotoxicol Environ Saf ; 208: 111769, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396087

RESUMO

Soils contaminated with heavy metals such as Chromium (Cr) and Cadmium (Cd) severely impede plant growth. Several rhizospheric microorganisms support plant growth under heavy metal stress. In this study, Cr and Cd stress was applied to in vitro germinating seedlings of a Legume plant species, Sesbania sesban, and investigated the plant growth potential in presence and absence of Bacillus anthracis PM21 bacterial strain under heavy metal stress. The seedlings were exposed to different concentrations of Cr (25-75 mg/L) and Cd (100-200 mg/L) in Petri plates. Growth curve analysis of B. anthracis PM21 revealed its potential to adapt Cr and Cd stress. The bacteria supported plant growth by exhibiting ACC-deaminase activity (1.57-1.75 µM of α-ketobutyrate/h/mg protein), producing Indole-3-acetic acid (99-119 µM/mL) and exopolysaccharides (2.74-2.98 mg/mL), under heavy metal stress condition. Analysis of variance revealed significant differences in growth parameters between the seedlings with and without bacterial inoculation in metal stress condition. The combined Cr+Cd stress (75 + 200 mg/L) significantly reduced root length (70%), shoot length (24%), dry weight (54%) and fresh weight (57%) as compared to control. Conversely, B. anthracis PM21 inoculation to seedlings significantly increased (p ≤ 0.05) seed germination percentage (5%), root length (31%), shoot length (23%) and photosynthetic pigments (Chlorophyll a: 20%; Chlorophyll b: 16% and total chlorophyll: 18%), as compared to control seedlings without B. anthracis PM21 inoculation. The B. anthracis PM21 inoculation also enhanced activities of antioxidant enzymes, including superoxide dismutase (52%), peroxidase (66%), and catalase (21%), and decreased proline content (56%), electrolyte leakage (50%), and malondialdehyde concentration (46%) in seedlings. The B. anthracis PM21 inoculated seedlings of S. sesban exhibited significantly high (p ≤ 0.05) tissue deposition of Cr (17%) and Cd (16%) as compared to their control counterparts. Findings of the study suggested that B. anthracis PM21 endured metal stress through homeostasis of antioxidant activities, and positively impacted S. sesban growth and biomass. Further experiments in controlled conditions are necessary for investigating phytoremediation potential of S. sesban in metal-contaminated soils in presence of B. anthracis PM21 bacterial strain.


Assuntos
Bacillus anthracis/fisiologia , Metais Pesados/toxicidade , Sesbania/fisiologia , Poluentes do Solo/toxicidade , Bacillus anthracis/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Catalase/metabolismo , Clorofila , Clorofila A/metabolismo , Cromo/análise , Germinação/efeitos dos fármacos , Ácidos Indolacéticos , Metais Pesados/análise , Plântula/metabolismo , Sesbania/metabolismo , Sesbania/microbiologia , Solo , Poluentes do Solo/análise
7.
Heliyon ; 7(1): e05895, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490670

RESUMO

Vermi-composting is an environmental friendly and economic process to decompose organic waste. The objective of this study was to produce vermi-compost using E isenia fetida and to investigate the impact of vermi-compost (VC) and organic manure (cow dung) on seed germination, seedlings, and growth parameters of Tagetes erecta. Physio-chemical parameters of vermi-compost and organic manure were recorded. A potting experiment was designed, germination medium containing soil, sand, and various concentrations of vermi-composts. The composition of germinating media was: TO (Sand + Soil), TCC (Sand + Soil + Cow dung), 10% VC (Sand + Soil + 0.1 kg VC), 15% VC (Sand + Soil + 0.15 kg VC), 20% VC (Sand + Soil + 0.2 kg VC), 25% VC (Sand + Soil + 0.25 kg VC), 30% VC (Sand + Soil + 0.3 kg VC), and 35% VC (Sand + Soil + 0.35 kg VC). Seed germination, seedling, vegetative plant growth, and flowering parameters were evaluated in different germinating media. Pre and post-physio-chemical parameters of germination media were also recorded to check their stability and quality. Results showed that 20% VC was effective for the early initiation of seed germination (2.0 ± 0.0 days) and all growth parameters of marigold seedlings. The germination percentage at 20% VC was recorded as 87.5 ± 1.40 %. The best vegetative plant growth and flowering parameters of marigold plants were observed with 35% VC after transplantation. Findings showed that vermi-compost is the best-suited germination and growing media, which not only improved the soil health but also promoted seed germination and plant growth. Our study undoubtedly indicates that vermi-compost is a more encouraging and advantageous bio-fertilizer and can be used as a powerful and effective for immediate marigold production.

8.
Plants (Basel) ; 9(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255160

RESUMO

Drought is a major constraint in drylands for crop production. Plant associated microbes can help plants in acquisition of soil nutrients to enhance productivity in stressful conditions. The current study was designed to illuminate the effectiveness of desert rhizobacterial strains on growth and net-return of chickpeas grown in pots by using sandy loam soil of Thal Pakistan desert. A total of 125 rhizobacterial strains were isolated, out of which 72 strains were inoculated with chickpeas in the growth chamber for 75 days to screen most efficient isolates. Amongst all, six bacterial strains (two rhizobia and four plant growth promoting rhizobacterial strains) significantly enhanced nodulation and shoot-root length as compared to other treatments. These promising strains were morphologically and biochemically characterized and identified through 16sRNA sequencing. Then, eight consortia of the identified isolates were formulated to evaluate the growth and development of chickpea at three moisture levels (55%, 75% and 95% of field capacity) in a glass house experiment. The trend for best performing consortia in terms of growth and development of chickpea remained T2 at moisture level 1 > T7 at moisture level 2 > T4 at moisture level 3. The present study indicates the vital role of co-inoculated bacterial strains in growth enhancement of chickpea under low moisture availability. It is concluded from the results that the consortium T2 (Mesorhizobium ciceri RZ-11 + Bacillus subtilis RP-01 + Bacillus mojavensis RS-14) can perform best in drought conditions (55% field capacity) and T4 (Mesorhizobium ciceri RZ-11 + Enterobacter Cloacae RP-08 + Providencia vermicola RS-15) can be adopted in irrigated areas (95% field capacity) for maximum productivity of chickpea.

9.
Plant Physiol Biochem ; 151: 640-649, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32339911

RESUMO

Sustainability in crop production has emerged as one of the most important concerns of present era's agricultural systems. Plant growth promoting bacteria (PGPB) has been characterized as a set of microorganisms used for enhancing plant growth and a tool for biological control of phytopathogens. However, the inconsistent performance of these bacteria from laboratory/greenhouse to field level has emerged due to prevailing abiotic stresses in fields. Sugarcane crop encounters a combination of biotic and abiotic stresses during its long developmental stages. Nevertheless, the selection of antagonistic PGPB with abiotic stress tolerance would be beneficial for end-user by the successful establishment of product with required effects under field conditions. Stress tolerant Bacillus xiamenensis strain (PM14) isolated from the sugarcane rhizosphere grown in the fields was examined for various PGP activities, enzyme assays, and antibiotic resistance. Strain was screened for in vitro tolerance against drought, salinity, heat stress, and heavy metal toxicity. Inhibition co-efficient of B. xiamenensis PM14 was also calculated against six phyto-pathogenic fungi, including Colletotrichum falcatum (53.81), Fusarium oxysporum (68.24), Fusarium moniliforme (69.70), Rhizoctonia solani (71.62), Macrophomina phaseolina (67.50), and Pythium splendens (77.58). B. xiamenensis is reported here for the first time as the rhizospheric bacterium which possesses resistance against 12 antibiotics and positive results for all in vitro PGP traits except HCN production. Role of 1-aminocyclopropane-1-carboxylate deaminase in the amelioration of biotic and abiotic stress was also supported by the amplification of acds gene. Moreover, in vitro and in vivo experiments revealed B. xiamenensis as the potential antagonistic PGPR and bio-control agent. Results of greenhouse experiment against sugarcane red rot indicated that inoculation of B. xiamenensis to sugarcane plants could suppress the disease symptoms and enhance plant growth. Augmented production of antioxidative enzymes and proline content may lead to the induced systemic resistance against red rot disease of sugarcane. Thus, the future application of native multi-stress tolerant bacteria as bio-control agents in combination with current heat, drought, salinity, and heavy metal tolerance strategy could contribute towards the global food security.


Assuntos
Bacillus , Resistência à Doença , Saccharum , Bacillus/fisiologia , Resistência à Doença/fisiologia , Fungos/fisiologia , Doenças das Plantas/microbiologia , Saccharum/microbiologia
10.
Plant Physiol Biochem ; 146: 249-258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31765956

RESUMO

Due to anthropogenic activities, chromium (Cr) contamination is ubiquitous with deleterious effects on plant and soil microbiota. Present study was designed to address beneficial effects of Bacillus xiamenensis PM14 on Sesbania sesban. Its physiological and biochemical attributes along with enhanced antioxidant enzyme activities under different levels of Cr toxicity (50, 100 and 200 mg kg-1) were evaluated. After harvesting at 50 days of sowing, plant growth attributes (root and shoot length, fresh and dry weight), physiological parameters (chlorophyll a, b and carotenoid content), antioxidant activities (superoxide dismutase, peroxidase and catalase), malondialdehyde content, electrolyte leakage, proline, relative water content and total Cr uptake in S. sesban were recorded. Experiment was statistically managed as complete randomized design (CRD). Results revealed that Cr stress reduced plant growth, relative water content at all levels of Cr contamination. However, inoculation of B. xiamenensis PM14 positively influence all parameters of S. sesban both under normal and stressed conditions. Inoculation of B. xiamenensis PM14 promoted plant growth (root length 17.08%, shoot length 28.36%) physiological attributes (chlorophyll a 55.26%, chlorophyll b 59.13%), antioxidant activities (superoxide dismutase 30.09%, peroxidase 6.96% and catalase 0.89%), relative water content 25.79%, enhanced total Cr uptake 47.33% and reduced proline 12.33%, malondialdehyde content 27.53% and electrolyte leakage 2.73% in S. sesban at 200 mg kg-1 Cr stress as compared to uninoculated plants grown under the same level of Cr. Our findings revealed first report of B. xiamenensis as phytoremediator and its inoculation on Sesbania plant. It also exposed dual effects of B. xiamenensis to ameliorate Cr stress along with improved plant growth and induced heavy metal stress tolerance in spiked soils.


Assuntos
Sesbania , Antioxidantes , Bacillus , Biodegradação Ambiental , Clorofila A , Cromo , Raízes de Plantas , Solo , Poluentes do Solo
11.
Ecotoxicol Environ Saf ; 183: 109466, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31408821

RESUMO

The potential of plant growth regulating microorganisms present in the soil can be explored towards the purpose of identifying salt tolerant strategies and crop cultivars. Current study was designed to elucidate the capabilities of salt stress tolerant plant growth promoting rhizobacteria (PGPR) Bacillus siamensis (PM13), Bacillus sp. (PM15) and Bacillus methylotrophicus (PM19) in undermining the effects of salt stress on wheat seedling. Strains were characterized for their IAA (81-113 µM/ml), ACC-deaminase (0.68-0.95 µM/mg protein/h) and exopolysaccharide (EPS) (0.62-0.97 mg/ml) producing activity both under normal and NaCl stressed conditions. Effects of bacterial inoculation on germination and seedling growth of wheat variety Pakistan-13 was observed under induced salinity stress levels (0, 4, 8, 16 dS/m). All the morpho-physiological characteristics of wheat seedlings were affected drastically by the NaCl stress and the growth parameters expressed a negative relationship with increased NaCl levels. PGPR application had a very positive influence on germination rate of wheat seedlings, root and shoot length, photosynthetic pigments etc. Elongated roots and enhanced vegetative shoot growth as well as seedling's fresh and dry weights were highest in plants treated with B. methylotrophicus PM19. Sequestration of Na+ ion by EPS production and degradation of exuded ACC into a-ketobutyrate and ammonia by ACCD bacteria efficiently reduced the impact of salinity stress on wheat growth. Current findings suggested that the used PGPR strains are potential candidates for improving crop growth in salt stressed agricultural systems. However further research validation would be necessary before large scale/field application.


Assuntos
Bacillus/crescimento & desenvolvimento , Carbono-Carbono Liases/metabolismo , Germinação , Polissacarídeos Bacterianos/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Bacillus/metabolismo , Paquistão , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/microbiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Microbiologia do Solo , Triticum/efeitos dos fármacos , Triticum/microbiologia
12.
J Environ Manage ; 247: 672-680, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279144

RESUMO

Non-renewable phosphorus (P) resources are intensively declining and recyclable P is high in demand for agricultural sector. Biochar as a renewable source of P and its physicochemical properties may improve the nutrients condition in the soil for plant availability. This study was designed to evaluate the interaction of biochar with soil microbes in differently textured and P-limited soils for P availability, root colonization and nutrient uptake by plants. Onion plants were grown in two differently textured soils with two types of biochar, with or without P application, three microbially inoculated treatments and uninoculated control. Plants were grown for 65 days and root-shoot biomass, nutrient concentration and mycorrhizal root colonization were analyzed. The WinRhizo was used to evaluate root attributes such as length, surface area and volume of roots. Biochar addition enhanced the nutrient uptake and plant biomass in the presence of P and microbial inoculants. Root colonization was notably increased in biochar + mycorrhizal inoculated plants. Biochar and soil type interactions may develop a unique behavior of nutrient uptake, root colonization, plant growth and root attributes. Biochar in combination with microbial inoculants could be considered a potentially renewable source of P fertilizer.


Assuntos
Inoculantes Agrícolas , Fósforo , Carvão Vegetal , Nitrogênio , Cebolas , Raízes de Plantas , Solo
13.
Environ Sci Pollut Res Int ; 26(20): 20689-20700, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104234

RESUMO

Cadmium (Cd) toxicity in agricultural crops is a widespread problem. Little is known about biochar and arbuscular mycorrhizal fungi (AMF) effect on Cd concentration in maize plant either applied separately or in combination. Current study was performed to demonstrate effects of biochar and Rhizophagus clarus on plant growth, photosynthesis activity, nutrients (P, Ca, Mg, Fe, Cu, and Mn), and Cd concentration in maize grown in Cd-spiked soil. The alkaline soil was spiked by Cd factor at three levels: 0 (Cd 0), 5 (Cd 5), and 10 (Cd 10) mg/kg; biochar factor at two levels: 0 and 1%; and mycorrhizal inoculum factor at two levels: MF0 and MF1 (R. clraus). Plants were harvested after 70 days of seed germination, and various morphological and physiological parameters, as well as elemental concentration and root colonization, were recorded. Addition of biochar increased plant biomass by 21% (Cd 5) and 93% (Cd 10), MF1 enhanced by 53% (Cd 0) and 69% (Cd 10), while biochar + MF1 enhanced dry plant biomass by 70% (Cd 0) and 94% (Cd 10). Results showed maximum increase of 94% (Cd 10) in plant biomass was observed in Cd-spiked soil. Root colonization decreased proportionally by increasing Cd concentration and at Cd 10, colonization was 36.7% and 31.7% for MF1 and biochar + MF1 treatments, respectively. Besides that, addition of biochar enhanced root attributes (root length, volume, and surface area) by 34-58% compared to control in Cd 10. The MF1 increased these attributes by 11-78% while biochar + MF1 enhanced by 32-61% in Cd-spiked soil. However, biochar + MF1 neutralized Cd stress in maize plant for gaseous attributes (assimilation rate, transpiration rate, intercellular CO2, and stomatal conductance). The MF1 enhanced Cd concentration in plant as it was 3.32 mg/kg in Cd 5 and 6.73 mg/kg in Cd 10 treatments while addition of biochar phytostabilized Cd and reduced its concentration in plants by 2.0 mg/kg in Cd 5 and 4.27 mg/kg in Cd 10. The biochar + MF1 had 2.9 mg/kg and 4.8 mg/kg Cd concentration in Cd 5 and Cd 10 plants, respectively. Phosphorus concentration was augmented in shoots (up to 26%) and roots (up to 20%) of maize plant in biochar-amended soil than control plants. In biochar + MF1, concentration of P was 1.01% and 0.73% in Cd 5 and Cd 10, respectively. It is concluded that biochar + MF1 treatment enhances plant biomass while addition of sole biochar reduced Cd uptake, slightly indifferent to earlier treatment.


Assuntos
Cádmio/metabolismo , Carvão Vegetal/química , Glomeromycota/fisiologia , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Zea mays/crescimento & desenvolvimento , Biomassa , Cádmio/química , Cádmio/toxicidade , Carvão Vegetal/análise , Nutrientes/metabolismo , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Zea mays/metabolismo , Zea mays/microbiologia
14.
Plant Physiol Biochem ; 139: 569-577, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31029030

RESUMO

Plant growth-promoting endophytes (PGPEs) can colonize the internal tissues of plants and are capable of promoting plant growth. These bacteria can improve plant tolerance against various biotic and abiotic stresses via the expression of antioxidant enzymes and the production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Two salt-tolerant PGPEs, Kocuria rhizophila: KF875448 (14ASP) and Cronobacter sakazakii: KM042090 (OF115), with ACC deaminase activity were investigated for their potential to ameliorate plant salinity stress. The wheat varieties Pasban 90 and Khirman were subjected to two levels of salt stress (80 and 160 mM NaCl) under greenhouse conditions by using a completely randomized design. Analyses of plant growth parameters, antioxidant enzyme activities, chlorophyll and plant mineral contents were conducted to investigate the stress tolerance induced by the PGPEs. The ACC utilization by the PGPEs directly relates to the promotion of plant growth due to the lowering of excess ethylene production under salt stress. High levels of NaCl exhibited negative effects in both varieties. However, inoculation with PGPEs increased the morphological traits and antioxidant activities of the plants while decreasing the Na+ contents in all treatments compared to uninoculated treatment. Wheat variety Pasban 90 was more tolerant than Khirman in to salt stress in all the measured morphological and biochemical parameters, while the bacterial strain OF115 performed significantly better in all morphological and biochemical parameters, such as fresh dry weight, root shoot length, proline and chlorophyll contents, compared to strain 14ASP. The K+/Na+ ratio in the tissues of bacterial treated plants was higher than the control, probably in order to maintain the nutrient balance. The results of our study revealed that the inoculation of plants by ACC deaminase-producing PGPEs is a potential tool for the enhancement of plant growth and stress tolerance. Moreover, endophytic bacteria allied with host plants are capable of enduring high saline conditions and can interact with plants in a very efficient way.


Assuntos
Antioxidantes/metabolismo , Carbono-Carbono Liases/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo , Salinidade , Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
15.
Pak J Pharm Sci ; 31(5): 1791-1795, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150172

RESUMO

The objective of present study was to develop and evaluate polyethylene glycol (PEG) based diclofenac sodium suppositories. This study used water soluble PEG bases (1000, 4000 and 6000) in different combinations to formulate suppositories, which were further subjected for their physicochemical properties evaluation such as weight variation, average melting point, content uniformity and disintegration. Dissolution test was used to perform the in vitro release rate studies of the suppositories. The suppository (P3) containing PEG-6000 (50%) and PEG-4000 (50%) exhibited rapid in vitro release rate of diclofenac sodium. Moreover, homogeneous distribution of diclofenac sodium is found in all six formulations. The in vitro release patterns of diclofenac sodium from the marketed Voltral suppository (100mg) and formulated suppositories were also compared and found in standard limits.


Assuntos
Diclofenaco/farmacocinética , Desenvolvimento de Medicamentos/métodos , Polietilenoglicóis/farmacocinética , Supositórios/farmacocinética , Diclofenaco/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Polietilenoglicóis/síntese química , Supositórios/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...