Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 3044-3054, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38662992

RESUMO

Photodynamic therapy (PDT) has demonstrated efficacy in eliminating local tumors, yet its effectiveness against metastasis is constrained. While immunotherapy has exhibited promise in a clinical context, its capacity to elicit significant systemic antitumor responses across diverse cancers is often limited by the insufficient activation of the host immune system. Consequently, the combination of PDT and immunotherapy has garnered considerable attention. In this study, we developed pH-responsive porphyrin-peptide nanosheets with tumor-targeting capabilities (PRGD) that were loaded with the IDO inhibitor NLG919 for a dual application involving PDT and immunotherapy (PRGD/NLG919). In vitro experiments revealed the heightened cellular uptake of PRGD/NLG919 nanosheets in tumor cells overexpressing αvß3 integrins. The pH-responsive PRGD/NLG919 nanosheets demonstrated remarkable singlet oxygen generation and photocytotoxicity in HeLa cells in an acidic tumor microenvironment. When treating HeLa cells with PRGD/NLG919 nanosheets followed by laser irradiation, a more robust adaptive immune response occurred, leading to a substantial proliferation of CD3+CD8+ T cells and CD3+CD4+ T cells compared to control groups. Our pH-responsive targeted PRGD/NLG919 nanosheets therefore represent a promising nanosystem for combination therapy, offering effective PDT and an enhanced host immune response.


Assuntos
Imunoterapia , Nanoestruturas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Nanoestruturas/química , Células HeLa , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Porfirinas/química , Porfirinas/farmacologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Imidazóis , Isoindóis
2.
Biomaterials ; 308: 122569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626556

RESUMO

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Óxido de Alumínio , Células Dendríticas , Antígenos de Superfície da Hepatite B , Nanopartículas , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos/farmacologia , Animais , Nanopartículas/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Feminino , Citocinas/metabolismo , Compostos de Alúmen/química , Compostos de Alúmen/farmacologia
3.
Inorg Chem ; 63(13): 5773-5778, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498977

RESUMO

Seawater electrolysis presents a promising avenue for green hydrogen production toward a carbon-free society. However, the electrode materials face significant challenges including severe chlorine-induced corrosion and high reaction overpotential, resulting in low energy conversion efficiency and low current density operation. Herein, we put forward a nanoporous nickel (npNi) cathode with high chlorine corrosion resistance for energy-efficient seawater electrolysis at industrial current densities (0.4-1 A cm-2). With the merits of an electrostatic chlorine-resistant surface, modulated Ni active sites, and a robust three-dimensional open structure, the npNi electrode showed a low hydrogen evolution reaction overpotential of 310 mV and a high electricity-hydrogen conversion efficiency of 59.7% at 400 mA cm-2 in real seawater and outperformed most Ni-based seawater electrolysis cathodes in recent publications and the commercial Ni foam electrode (459 mV, 46.4%) under the same test condition. In situ electrochemical impedance spectroscopy, high-frame-rate optical microscopy, and first-principles calculation revealed that the improved corrosion resistance, enhanced intrinsic activity, and mass transfer were responsible for the lowered electrocatalytic overpotential and enhanced energy efficiency.

4.
Carbohydr Polym ; 334: 122044, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553240

RESUMO

Chitosan, known for its appealing biological properties in packaging and biomedical applications, faces challenges in achieving a well-organized crystalline structure for mechanical excellence under mild conditions. Herein, we propose a facile and mild bioengineering approach to induce organized assembly of amorphous chitosan into mechanically strong bio-composite via incorporating a genetically engineered insect structural protein, the cuticular protein hypothetical-1 from the Ostrinia furnacalis (OfCPH-1). OfCPH-1 exhibits high binding affinity to chitosan via hydrogen-bonding interactions. Simply mixing a small proportion (0.5 w/w%) of bioengineered OfCPH-1 protein with acidic chitosan precursor induces the amorphous chitosan chains to form fibrous networks with hydrated chitosan crystals, accompanied with a solution-to-gel transition. We deduce that the water shell destruction driven by strong protein-chitosan interactions, triggers the formation of well-organized crystalline chitosan, which therefore offers the chitosan with significantly enhanced swelling resistance, and strength and modulus that outperforms that of most reported chitosan-based materials as well as petroleum-based plastics. Moreover, the composite exhibits a stretch-strengthening behavior similar to the training living muscles on cyclic load. Our work provides a route for harnessing the OfCPH-1-chitosan interaction in order to form a high-performance, sustainably sourced bio-composite.


Assuntos
Quitosana , Animais , Quitosana/química , Água , Ligação de Hidrogênio , Insetos
5.
Environ Pollut ; 347: 123671, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442824

RESUMO

Considerable research has been conducted to evaluate microplastics (MPs) as vehicles for the transfer of hazardous pollutants in organisms. However, little effort has been devoted to the chemical release of hazardous additive-derived pollutants from MPs in gut simulations. This study looked at the leaching kinetics of organophosphate esters (OPFRs) from polypropylene (PP) and polystyrene (PS) MPs in the presence of gut surfactants, specifically sodium taurocholate, at two biologically relevant temperatures for marine organisms. Diffusion coefficients of OPFRs ranged from 1.71 × 10-20 to 4.04 × 10-18 m2 s-1 in PP and 2.91 × 10-18 to 1.51 × 10-15 m2 s-1 in PS. The accumulation factors for OPFRs in biota-plastic and biota-sediment interactions ranged from 1.52 × 10-3-69.1 and 0.02-0.7, respectively. Based on B3LYP/6-31G (d,p) calculations, the biodynamic model analysis revealed a slight increase in the bioaccumulation of OPFRs at a minor dose of 0.05% MPs. However, at higher concentrations (0.5% and 5% MPs), there was a decrease in bioaccumulation compared to the lower concentration for most OPFR compounds. In general, the ingestion of PE MPs notably contributed to the bioaccumulation of OPFRs in lugworms, whereas the contribution of PP and PS MPs was minimal. This could vary among sites exhibiting varying levels of MP concentrations or MPs displaying stronger affinities towards chemicals.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos/metabolismo , Plásticos , Bioacumulação , Poliestirenos/metabolismo , Organofosfatos , Polipropilenos
6.
Shock ; 61(6): 855-860, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320215

RESUMO

ABSTRACT: Background: With the advancement of medicine and the development of technology, the limiting factors of aeromedical evacuation are gradually decreasing, and the scope of indications is expanding. However, the hypobaric and hypoxic environments experienced by critically ill patients in flight can cause lung injury, leading to inflammation and hypoxemia, which remains one of the few limiting factors for air medical evacuation. This study aimed to examine the mechanism of secondary lung injury in rat models of acute lung injury that simulate aeromedical evacuation. Methods: An acute lung injury model was induced in SD rats by the administration of lipopolysaccharide (LPS) followed by exposure to a simulated aeromedical evacuation environment (equivalent to 8,000 feet above sea level) or a normobaric normoxic environment for 4 h. The expression of hypoxia-inducible factor 1α (HIF-1α) was stabilized by pretreatment with dimethyloxalylglycine. The reactive oxygen species levels and the protein expression levels of HIF-1α, Bcl-2-interacting protein 3 (BNIP3), and NIX in lung tissue were measured. Results: Simulated aeromedical evacuation exacerbated pathological damage to lung tissue and increased the release of inflammatory cytokines in serum as well as the reactive oxygen species levels and the protein levels of HIF-1α, BNIP3, and NIX in lung tissue. Pretreatment with dimethyloxalylglycine resulted in increases in the protein expression of HIF-1α, BNIP3, and NIX. Conclusion: Simulated aeromedical evacuation leads to secondary lung injury through mitophagy.


Assuntos
Lesão Pulmonar Aguda , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas de Membrana , Mitofagia , Ratos Sprague-Dawley , Animais , Lesão Pulmonar Aguda/metabolismo , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Resgate Aéreo , Proteínas Mitocondriais/metabolismo , Modelos Animais de Doenças
7.
Small Methods ; : e2301072, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348928

RESUMO

The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.

8.
Small ; 20(23): e2308749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161265

RESUMO

Monosodium urate (MSU) crystal deposition in joints can lead to the infiltration of neutrophils and macrophages, and their activation plays a critical role in the pathological progress of gout. However, the role of MSU crystal physicochemical properties in inducing cell death in neutrophil and macrophage is still unclear. In this study, MSU crystals of different sizes are synthesized to explore the role of pyroptosis in gout. It is demonstrated that MSU crystals induce size-dependent pyroptotic cell death in bone marrow-derived neutrophils (BMNs) and bone marrow-derived macrophages (BMDMs) by triggering NLRP3 inflammasome-dependent caspase-1 activation and subsequent formation of N-GSDMD. Furthermore, it is demonstrated that the size of MSU crystal also determines the formation of neutrophil extracellular traps (NETs) and aggregated neutrophil extracellular traps (aggNETs), which are promoted by the addition of interleukin-1ß (IL-1ß). Based on these mechanistic understandings, it is shown that N-GSDMD oligomerization inhibitor, dimethyl fumarate (DMF), inhibits MSU crystal-induced pyroptosis in BMNs and J774A.1 cells, and it further alleviates the acute inflammatory response in MSU crystals-induced gout mice model. This study elucidates that MSU crystal-induced pyroptosis in neutrophil and macrophage is critical for the pathological progress of gout, and provides a new therapeutic approach for the treatment of gout.


Assuntos
Gota , Macrófagos , Neutrófilos , Piroptose , Ácido Úrico , Gota/patologia , Gota/metabolismo , Animais , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Camundongos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo
9.
Redox Biol ; 70: 103050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277963

RESUMO

Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.


Assuntos
Tiorredoxina Redutase 1 , Antioxidantes/metabolismo , Cinética , Oxirredução , Selenocisteína/metabolismo , Tiorredoxina Redutase 1/química , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Humanos
10.
J Pharmacol Exp Ther ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272670

RESUMO

Therapeutic vaccines containing aluminum adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects. However, the neurotoxicity of aluminum adjuvants with different physicochemical properties have not been completely elucidated. In this study, a library of engineered aluminum oxyhydroxide (EAOs) and aluminum hydroxyphosphate (EAHPs) nanoparticles was synthesized to determine their neurotoxicity in vitro It was demonstrated that the surface charge of EAHPs and size of EAOs did not affect the cytotoxicity in N9, bEnd.3 and HT22 cells, however, soluble aluminum ions trigger the cytotoxicity in three different cell lines. Moreover, soluble aluminum ions induce apoptosis in N9 cells, and further mechanistic studies demonstrated that this apoptosis was mediated by mitochondrial reactive oxygen species (mtROS) generation and mitochondrial membrane potential (MMP) loss. This study identifies the safety profile of aluminum-containing salts as adjuvants in the nervous system for use in a therapeutic cancer vaccine, and provides novel design strategies for their safer applications. Significance Statement Although therapeutic cancer vaccines containing aluminum-based nanoparticle adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects, the neurotoxicity of such nanoparticle adjuvants is still unclear. Thus, this work fills this gap by engineering aluminum-based nanoparticle adjuvants with different surface charges and sizes to elucidate their neurotoxicity in the context of cancer vaccines.

11.
Handb Exp Pharmacol ; 284: 113-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37059911

RESUMO

Adjuvants have been extensively and essentially formulated in subunits and certain inactivated vaccines for enhancing and prolonging protective immunity against infections and diseases. According to the types of infectious diseases and the required immunity, adjuvants with various acting mechanisms have been designed and applied in human vaccines. In this chapter, we introduce the advances in vaccine adjuvants based on nanomaterials and small molecules. By reviewing the immune mechanisms induced by adjuvants with different characteristics, we aim to establish structure-activity relationships between the physicochemical properties of adjuvants and their immunostimulating capability for the development of adjuvants for more effective preventative and therapeutic vaccines.


Assuntos
Nanoestruturas , Vacinas , Humanos , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química
12.
J Pharm Sci ; 113(2): 455-462, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37813301

RESUMO

Aluminum hydroxide adjuvants are widely used in human vaccines, such as diphtheria, tetanus, hepatitis A and hepatitis B vaccines. The adsorption of antigens on aluminum hydroxide adjuvants determines the immune boosting effect of vaccines, but it is not clear how changes in physicochemical properties resulting from the production and formulation processes affect the adsorption of aluminum hydroxide adjuvants with antigens. In this study, the commercial aluminum hydroxide adjuvant Alhydrogel® was pretreated by commonly used processes such as autoclaving and calcination, and the changes of aluminum hydroxide adjuvant in physicochemical properties during the treatment were then comprehensively characterized. The adsorption of ovalbumin (OVA) with treated Alhydrogel®, was also investigated, it was found that the decrease in specific surface area caused by the autoclaving process reduced the adsorptive capacity of the antigen, and the adsorptive strength of antigen was decreased only when the surface hydroxyl groups and chemically bound water of adjuvant were reduced by calcination. These findings help to optimize the production and formulation process of adjuvants for the rational regulation of antigen adsorption in vaccines.


Assuntos
Hidróxido de Alumínio , Alumínio , Humanos , Hidróxido de Alumínio/química , Adsorção , Adjuvantes Imunológicos/química , Adjuvantes Farmacêuticos/química , Vacinas contra Hepatite B
13.
J Org Chem ; 88(22): 16024-16037, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37917565

RESUMO

An asymmetric synthesis of chiral 2,5-diketopiperazines by the Ugi-4CR/cyclization is exhibited. The employment of catalytic anionic chiral Co(III) complexes delivered α-propiolyl aminoamides in high yields with excellent enantioselectivities (31 examples, up to 95% ee). The following treatment of Ugi-adducts with PPh3 leads to chiral 2,5-DKPs without significant loss of enantioselectivities (26 examples, up to 91% ee).

14.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836684

RESUMO

Targeting thioredoxin reductase (TXNRD) with low-weight molecules is emerging as a high-efficacy anti-cancer strategy in chemotherapy. Sanguinarine has been reported to inhibit the activity of TXNRD1, indicating that benzophenanthridine alkaloid is a fascinating chemical entity in the field of TXNRD1 inhibitors. In this study, the inhibition of three benzophenanthridine alkaloids, including chelerythrine, sanguinarine, and nitidine, on recombinant TXNRD1 was investigated, and their anti-cancer mechanisms were revealed using three gastric cancer cell lines. Chelerythrine and sanguinarine are more potent inhibitors of TXNRD1 than nitidine, and the inhibitory effects take place in a dose- and time-dependent manner. Site-directed mutagenesis of TXNRD1 and in vitro inhibition analysis proved that chelerythrine or sanguinarine is primarily bound to the Sec498 residue of the enzyme, but the neighboring Cys497 and remaining N-terminal redox-active cysteines could also be modified after the conjugation of Sec498. With high similarity to sanguinarine, chelerythrine exhibited cytotoxic effects on multiple gastric cancer cell lines and suppressed the proliferation of tumor spheroids derived from NCI-N87 cells. Chelerythrine elevated cellular levels of reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress. Moreover, the ROS induced by chelerythrine could be completely suppressed by the addition of N-acetyl-L-cysteine (NAC), and the same is true for sanguinarine. Notably, Nec-1, an RIPK1 inhibitor, rescued the chelerythrine-induced rapid cell death, indicating that chelerythrine triggers necroptosis in gastric cancer cells. Taken together, this study demonstrates that chelerythrine is a novel inhibitor of TXNRD1 by targeting Sec498 and possessing high anti-tumor properties on multiple gastric cancer cell lines by eliciting necroptosis.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Gástricas , Humanos , Benzofenantridinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Necroptose , Alcaloides/farmacologia , Alcaloides/química , Oxirredução
15.
Front Cardiovasc Med ; 10: 1251669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840964

RESUMO

For a long time, cardiovascular clinicians have focused their research on coronary atherosclerotic cardiovascular disease and acute myocardial infarction due to their high morbidity, high mortality, high disability rate, and limited treatment options. Despite the continuous optimization of the therapeutic methods and pharmacological therapies for myocardial ischemia-reperfusion, the incidence rate of heart failure continues to increase year by year. This situation is speculated to be caused by the current therapies, such as reperfusion therapy after ischemic injury, drugs, rehabilitation, and other traditional treatments, that do not directly target the infarcted myocardium. Consequently, these therapies cannot fundamentally solve the problems of myocardial pathological remodeling and the reduction of cardiac function after myocardial infarction, allowing for the progression of heart failure after myocardial infarction. Coupled with the decline in mortality caused by acute myocardial infarction in recent years, this combination leads to an increase in the incidence of heart failure. As a new promising therapy rising at the beginning of the twenty-first century, cardiac regenerative medicine provides a new choice and hope for the recovery of cardiac function and the prevention and treatment of heart failure after myocardial infarction. In the past two decades, regeneration engineering researchers have explored and summarized the elements, such as cells, scaffolds, and cytokines, required for myocardial regeneration from all aspects and various levels day and night, paving the way for our later scholars to carry out relevant research and also putting forward the current problems and directions for us. Here, we describe the advantages and challenges of cardiac tissue engineering, a contemporary innovative therapy after myocardial infarction, to provide a reference for clinical treatment.

16.
Nano Lett ; 23(16): 7552-7560, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37494635

RESUMO

Zwitterionic polymers have emerged as promising trans-mucus nanocarriers due to their superior antifouling properties. However, for pH-sensitive zwitterionic polymers, the effect of the pH microenvironment on their trans-mucus fate remains unclear. In this work, we prepared a library of zwitterionic polydopamine-modified silica nanoparticles (SiNPs-PDA) with an isoelectric point of 5.6. Multiple-particle tracking showed that diffusion of SiNPs-PDA in mucus with a pH value of 5.6 was 3 times faster than that in mucus with pH value 3.0 or 7.0. Biophysical analysis found that the trans-mucus behavior of SiNPs-PDA was mediated by hydrophobic and electrostatic interactions and hydrogen bonding between mucin and the particles. Furthermore, the particle distribution in the stomach, intestine, and lung demonstrated the pH-mediated mucus penetration behavior of the SiNPs-PDA. This study reveals the pH-mediated mucus penetration behavior of zwitterionic nanomaterials, which provides rational design strategies for zwitterionic polymers as nanocarriers in various mucus microenvironments.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Dióxido de Silício/química , Polímeros/química , Nanopartículas/química , Muco , Concentração de Íons de Hidrogênio
17.
Gene ; 883: 147677, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37524135

RESUMO

White spot syndrome virus (WSSV) is a lethal shrimp pathogen that has a latent infection cycle. The latent virus can easily turn into an acute infection when the culture environment changes, leading to widespread shrimp mortality. However, the mechanism of WSSV latent infection is poorly understood. Bioinformatic analysis revealed that the promoters of WSSV latency-related genes (i.e., wsv151, wsv366, wsv403, and wsv427) contained putative myocyte enhancer factor 2 (MEF2) binding sites. This suggested that the transcription factor MEF2 may be involved in WSSV latent infection. To further investigate this, a MEF2 homolog (PvMEF2) was cloned from Penaeus vannamei and its role in WSSV latent infection was explored. The results showed that knockdown of PvMEF2 led to an increase in the copy number of WSSV, indicating reactivation of WSSV from a latent infection. It was further demonstrated that suppression of PvMEF2 significantly decreased expression of the viral latency-related genes in WSSV-latent shrimp, while overexpression of PvMEF2 in Drosophila S2 cells activated the promoter activity of the viral latency-related gene. Additionally, we demonstrated that silencing of PvMEF2 was able to upregulate the expression of pro-apoptosis genes, thereby promoting cell apoptosis during latent infection. Collectively, the present data suggest that PvMEF2 could promote the expression of virus latency-related genes and enhance cell survival to maintain WSSV latent infection. This finding would contribute to a better understanding of the maintenance mechanism of WSSV latent infection.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/genética , Penaeidae/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Drosophila/genética
18.
Ecotoxicol Environ Saf ; 258: 114969, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37167736

RESUMO

2,2'-Dibromobisphenol A (2,2'-DiBBPA) is frequently detected in the environment. However, the mobility of 2,2'-DiBBPA in the soil environment is poorly understood. The present study examined the effects of soil components such as the NaClO-resistant fraction, dithionite-citrate-bicarbonate -demineralized fraction, humin fraction, black carbon, DOC-removed fraction, exogenous dissolved organic carbon and heavy metal cations on the adsorption of 2,2'-DiBBPA on several types of agricultural soils. The adsorption isotherms on soils and soil components were well fitted to the linear isotherm equation. 2,2'-DiBBPA sorption onto soils was dominated by soil organic matter content (SOM) and affected by exogenous dissolved organic carbon. Linear regression relationships between adsorption capacity (Kd) and soil characteristics were evaluated to predict partitioning of 2,2'-DiBBPA. Black carbon played a predominant role in the adsorption of 2,2'-DiBBPA. Heavy metal ions significantly inhibited the adsorptive behavior of 2,2'-DiBBPA under alkaline conditions. Semiempirical linear relationships were observed between biota-sediment accumulation factors (1.18-2.47)/logarithm of bioconcentration factors (BCFs, 2.49-2.52) of 2,2'-DiBBPA in lugworms and Kd. These results allow for the prediction of the bioaccumulation of 2,2'-DiBBPA in other soils. Furthermore, values of log BCF > 1.0 indicate the preferential bioaccumulation of 2,2'-DiBBPA in biota. These data are of significance for understanding the migration of 2,2'-DiBBPA in agricultural soils and bioaccumulation in organisms.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Bioacumulação , Poluentes do Solo/análise , Matéria Orgânica Dissolvida , Adsorção , Carbono
19.
Research (Wash D C) ; 6: 0102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011280

RESUMO

The stimulator of interferon genes (STING) protein is an important and promising innate immune target for tumor therapy. However, the instability of the agonists of STING and their tendency to cause systemic immune activation is a hurdle. The STING activator, cyclic di-adenosine monophosphate (CDA), produced by the modified Escherichia coli Nissle 1917, shows high antitumor activity and effectively reduces the systemic effects of the "off-target" caused by the activation of the STING pathway. In this study, we used synthetic biological approaches to optimize the translation levels of the diadenylate cyclase that catalyzes CDA synthesis in vitro. We developed 2 engineered strains, CIBT4523 and CIBT4712, for producing high levels of CDA while keeping their concentrations within a range that did not compromise the growth. Although CIBT4712 exhibited stronger induction of the STING pathway corresponding to in vitro CDA levels, it had lower antitumor activity than CIBT4523 in an allograft tumor model, which might be related to the stability of the surviving bacteria in the tumor tissue. CIBT4523 exhibited complete tumor regression, prolonged survival of mice, and rejection of rechallenged tumors, thus, offering new possibilities for more effective tumor therapy. We showed that the appropriate production of CDA in engineered bacterial strains is essential for balancing antitumor efficacy and self-toxicity.

20.
Fish Shellfish Immunol ; 134: 108571, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736844

RESUMO

The cellular transcription factors are known to play important roles in virus infection. The present study cloned and characterized a transcription factor CCAAT/Enhancer-binding protein homolog from the shrimp Penaeus vannamei (designates as PvCEBP), and explored its potential functions in white spot syndrome virus (WSSV) infection. PvCEBP has an open reading frame (ORF) of 864 bp encoding a putative protein of 287 amino acids, which contained a highly C-terminal conserved bZIP domain. Phylogenetic tree analysis showed that PvCEBP was evolutionarily clustered with invertebrate CEBPs and closely related to the CEBP of Homarus americanus. Quantitative real-time PCR (qPCR) analysis revealed that PvCEBP was expressed in all examined shrimp tissues, with transcript levels increased in shrimp hemocytes and gill upon WSSV challenge. Furthermore, knockdown of PvCEBP mediated by RNA interference significantly decreased the expression of WSSV genes and viral loads, while enhanced the shrimp survival rate under WSSV challenge. In silico prediction and reporter gene assays demonstrated that PvCEBP could activate the promoter activity of the viral immediate-early gene ie1. Collectively, our findings suggest that PvCEBP is annexed by WSSV to promote its propagation by enhancing the expression of viral immediate-early genes.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Fatores de Transcrição/genética , Penaeidae/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Filogenia , Sequência de Aminoácidos , Proteínas de Artrópodes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA