Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 388, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900314

RESUMO

Despite increased attention to the aquaculture environment, there is still a lack of understanding regarding the significance of water quality. To address this knowledge gap, this study utilized high-throughput sequencing of 16S rRNA and 18S rRNA to examine microbial communities (bacteria and eukaryotes) in coastal water over different months through long-term observations. The goal was to explore interaction patterns in the microbial community and identify potential pathogenic bacteria and red tide organisms. The results revealed significant differences in composition, diversity, and richness of bacterial and eukaryotic operational taxonomic units (OTUs) across various months. Principal coordinate analysis (PCoA) demonstrated distinct temporal variations in bacterial and eukaryotic communities, with significant differences (P = 0.001) among four groups: F (January-April), M (May), S (June-September), and T (October-December). Moreover, a strong association was observed between microbial communities and months, with most OTUs showing a distinct temporal preference. The Kruskal-Wallis test (P < 0.05) indicated significant differences in dominant bacterial and eukaryotic taxa among months, with each group exhibiting unique dominant taxa, including potential pathogenic bacteria and red tide organisms. These findings emphasize the importance of monitoring changes in potentially harmful microorganisms in aquaculture. Network analysis highlighted positive correlations between bacteria and eukaryotes, with bacteria playing a key role in network interactions. The key bacterial genera associated with other microorganisms varied significantly (P < 0.05) across different groups. In summary, this study deepens the understanding of aquaculture water quality and offers valuable insights for maintaining healthy aquaculture practices. KEY POINTS: • Bacterial and eukaryotic communities displayed distinct temporal variations. • Different months exhibited unique potential pathogenic bacteria and red tide organisms. • Bacteria are key taxonomic taxa involved in microbial network interactions.


Assuntos
Aquicultura , Bactérias , Eucariotos , RNA Ribossômico 16S , RNA Ribossômico 18S , Água do Mar , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Água do Mar/microbiologia , RNA Ribossômico 18S/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Estações do Ano , Biodiversidade , Filogenia
2.
Cell Biochem Biophys ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438751

RESUMO

Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.

3.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 199-209, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38298057

RESUMO

Intrahepatic cholangiocarcinoma (ICC) accounts for approximately 15% of primary liver cancers, and the incidence rate has been increasing in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to identify signature genes. The aim of this study is to screen the signature genes of ICC and find the potential target for the treatment of ICC. We find that UBA3 is highly expressed in ICC, and knockdown of UBA3 inhibits ICC proliferation, invasion and migration. Mechanistic experiments show that UBA3 promotes ICC proliferation, invasion and migration by affecting ANXA2 through the MAPK signaling pathway. UBA3 is a target of bufalin, and bufalin targeting UBA3 inhibits ICC development and progression through the MAPK signaling pathway. In conclusion, our study shows that bufalin inhibits ICC by targeting UBA3, which has emerged as a new biomarker and potential therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Enzimas Ativadoras de Ubiquitina , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Transdução de Sinais , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
4.
Opt Express ; 32(3): 2959-2971, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297531

RESUMO

The diffuse attenuation coefficient (Kd) is known to be closely related to the light transmittance of sea ice, which plays a critical role in the energy balance and biological processes of the upper ocean. However, the commercial instruments cannot easily measure Kd in sea ice because sea ice is a solid. The authors of this study are developing an instrument with a high spectral solution to measure the irradiance profile of sea ice and the irradiance in the atmosphere. Three Kd experiments were carried out, including two in-situ experiments in the Liaodong Bay and one in the laboratory. The results showed that the Kd of the sea ice varied with depth, and the values in adjacent sea ice layers differed by up to 2 times. In addition, due to changes in the climate environment, the Kd of sea ice showed temporal variations. For example, there was a 1.38-fold difference in the Kd values of the surface layer of sea ice at different times in 2022. The values in different sea ice layers also showed different trends over time, and the coefficient of determination (R2) of Kd between adjacent layers over time was as low as 0.008. To explain the driving mechanism of spatio-temporal variability of Kd, an additional experiment focusing on the physical microstructure of sea ice was conducted in Liaodong Bay in 2022. The result shows that the change in air bubbles in the sea ice may be the main the reason for the change in Kd. For example, when the sea ice was exchanging brine and bubbles with the atmosphere above and the seawater below, the highly absorbent particles in it tend to remain in their original position. Considering that the total absorption coefficient changed slightly, the bubbles with the characteristic of intense scattering were found to be the main factor influencing the Kd changes. This conclusion is supported by the fact that the value of R2 between the bubbles and Kd was 0.52. If climatic changes have led to an increase in the volume of bubbles, the more bubbles will increase the scattering properties of sea ice and lead to an increase in Kd. Conversely, the reduced bubble volume would reduce the scattering properties of sea ice, which in turn would reduce Kd.

5.
Mar Pollut Bull ; 198: 115850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029671

RESUMO

Microbe plays an important role in the biogeochemical cycles of the coastal waters. However, comprehensive information about the microbe in the gulf waters is lacking. This study employed high-throughput sequencing and quantitative PCR (qPCR) to investigate the distribution patterns of bacterial, archaeal, ammonia-oxidizing bacterial (AOB), and archaeal (AOA) communities in Daya Bay. Community compositions and principal coordinates analysis (PCoA) exhibited significant spatial characteristics in the diversity and distributions of bacteria, archaea, AOB, and AOA. Notably, various microbial taxa (bacterial, archaeal, AOB, and AOA) exhibited significant differences in different regions, playing crucial roles in nitrogen, sulfur metabolism, and organic carbon mineralization. Canonical correlation analysis (CCA) or redundancy analysis (RDA) indicated that environmental parameters such as temperature, salinity, nitrate, total nitrogen, silicate, and phosphate strongly influenced the distributions of bacterial, archaeal, AOB, and AOA. This study deepens the understanding of the composition and ecological function of prokaryotes in the bay.


Assuntos
Amônia , Archaea , Archaea/metabolismo , Amônia/metabolismo , Baías , Oxirredução , Sedimentos Geológicos/química , Bactérias/metabolismo , China , Nitrogênio/metabolismo , Filogenia , Microbiologia do Solo
6.
Sci Total Environ ; 912: 169487, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142991

RESUMO

Unsaturated fatty acids (UFAs) are known to play a vital role in regulating stress resistance and metabolism in corals. Nevertheless, a comprehensive understanding of the microbial and functional composition of the UFA synthesis pathway (UFASP) remains lacking. This study employed metagenome and metabolome to investigate the microbial community, function, and metabolic response of UFASP in reef-building corals inhabiting the Nansha Islands. Our findings revealed significantly higher diversity for the UFASP microbe in bleached corals compared to unbleached corals. Furthermore, principal coordinates analysis (PCoA) and taxonomy assessments exhibited notable distinctions in the microbe between the two coral states. Notably, the dominant microorganisms involved in UFASP were Dinophyceae, Sordariomycetes, Ulvophyceae, and Chlorophyceae. Bleaching resulted in a considerable increase in fungal abundance within coral symbionts. A total of 12 KEGG Orthology (KO) were identified in UFASP, with PCoA analysis indicating significant differences in their abundance between bleached and unbleached corals. UFASP's beta-Oxidation module exhibited reduced abundance in bleached corals. Contribution analysis highlighted the participation of Symbiodiniaceae, Ascomycota, Chlorophyta, Proteobacteria, and Actinobacteria in UFASP. Notably, Symbiodiniaceae and Ascomycota were the major contributors to two UFASP modules, with the latter displaying greater involvement in bleached corals. Furthermore, significant differences in n3 and n6-family metabolites were observed between bleached and unbleached corals. Notably, bleaching induced a reduction in metabolites of Symbiodiniaceae, while an increase in the multiple UFAs abundance was detected in bleached corals. These findings suggest that bleaching-induced alterations coral symbionts composition directly impact the functionality of UFASP, ultimately affecting the corals' capacity to adapt to stress.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Metagenoma , Bactérias , Dinoflagellida/fisiologia , Adaptação Fisiológica , Recifes de Corais , Simbiose
7.
Front Microbiol ; 14: 1180321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425997

RESUMO

Polymeric carbohydrates are abundant and their recycling by microbes is a key process of the ocean carbon cycle. A deeper analysis of carbohydrate-active enzymes (CAZymes) can offer a window into the mechanisms of microbial communities to degrade carbohydrates in the ocean. In this study, metagenomic genes encoding microbial CAZymes and sugar transporter systems were predicted to assess the microbial glycan niches and functional potentials of glycan utilization in the inner shelf of the Pearl River Estuary (PRE). The CAZymes gene compositions were significantly different between in free-living (0.2-3 µm, FL) and particle-associated (>3 µm, PA) bacteria of the water column and between water and surface sediments, reflecting glycan niche separation on size fraction and selective degradation in depth. Proteobacteria and Bacteroidota had the highest abundance and glycan niche width of CAZymes genes, respectively. At the genus level, Alteromonas (Gammaproteobacteria) exhibited the greatest abundance and glycan niche width of CAZymes genes and were marked by a high abundance of periplasmic transporter protein TonB and members of the major facilitator superfamily (MFS). The increasing contribution of genes encoding CAZymes and transporters for Alteromonas in bottom water contrasted to surface water and their metabolism are tightly related with particulate carbohydrates (pectin, alginate, starch, lignin-cellulose, chitin, and peptidoglycan) rather than on the utilization of ambient-water DOC. Candidatus Pelagibacter (Alphaproteobacteria) had a narrow glycan niche and was primarily preferred for nitrogen-containing carbohydrates, while their abundant sugar ABC (ATP binding cassette) transporter supported the scavenging mode for carbohydrate assimilation. Planctomycetota, Verrucomicrobiota, and Bacteroidota had similar potential glycan niches in the consumption of the main component of transparent exopolymer particles (sulfated fucose and rhamnose containing polysaccharide and sulfated-N-glycan), developing considerable niche overlap among these taxa. The most abundant CAZymes and transporter genes as well as the widest glycan niche in the abundant bacterial taxa implied their potential key roles on the organic carbon utilization, and the high degree of glycan niches separation and polysaccharide composition importantly influenced bacterial communities in the coastal waters of PRE. These findings expand the current understanding of the organic carbon biotransformation, underlying the size-fractionated glycan niche separation near the estuarine system.

8.
Bioengineering (Basel) ; 10(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508905

RESUMO

Aquaporins (AQPs) are essential channel proteins that play central roles in maintaining water homeostasis. Here, a novel aquaporin gene, named KoPIP2;1, was cloned from the mangrove plant Kandelia obovata by RACE technology. The KoPIP2;1 gene was 1404 bp in length with an open reading frame (ORF) of 852 bp, encoded with 283 amino acids. Database comparisons revealed that KoPIP2;1 protein shared the highest identity (91.26%) with the aquaporin HbPIP2;2, which was isolated from Hevea brasiliensis. Gene expression analysis revealed that the KoPIP2;1 gene was induced higher in leaves than in stems and roots of K. obovata under cold stress. Transient expression of KoPIP2;1 in Nicotiana benthamiana epidermal cells revealed that the KoPIP2;1 protein was localized to the plasma membrane. Overexpressing KoPIP2;1 in Arabidopsis significantly enhanced the lateral root number of the transgenic lines. KoPIP2;1 transgenic Arabidopsis demonstrated better growth, elevated proline content, increased superoxide dismutase (SOD) and peroxidase (POD) activities, and reduced malondialdehyde (MDA) content compared with the wild-type Arabidopsis when exposed to cold stress. The findings suggest that overexpression of KoPIP2;1 probably conferred cold tolerance of transgenic Arabidopsis by enhancing osmoregulation and antioxidant capacity. This present data presents a valuable gene resource that contributes to the advancement of our understanding of aquaporins and their potential application in enhancing plant stress tolerance.

9.
Small ; 19(29): e2208260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029577

RESUMO

Given that it is closely related to perovskite crystallization and interfacial trap densities, buried interfacial engineering is crucial for creating effective and stable perovskite solar cells. Compared with the in-depth studies on the defect at the top perovskite interface, exploring the defect of the buried side of perovskite film is relatively complicated and scanty owing to the non-exposed feature. Herein, the degradation process is probed from the buried side of perovskite films with continuous illumination and its effects on morphology and photoelectronic characteristics with a facile lift-off method. Additionally, a buffer layer of Piperazine Dihydriodide (PDI2 ) is inserted into the imbedded bottom interface. The PDI2 buffer layer is able to lubricate the mismatched thermal expansion between perovskite and substrate, resulting in the release of lattice strain and thus a void-free buried interface. With the PDI2 buffer layer, the degradation originates from the growing voids and increasing non-radiative recombination at the imbedded bottom interfaces are suppressed effectively, leading to prolonged operation lifetime of the perovskite solar cells. As a result, the power conversion efficiency of an optimized p-i-n inverted photovoltaic device reaches 23.47% (with certified 23.42%) and the unencapsulated devices maintain 90.27% of initial efficiency after 800 h continuous light soaking.

10.
Sci Total Environ ; 858(Pt 3): 160019, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356778

RESUMO

Coral bleaching significantly affects the function and health of coral reef ecosystems; however, the mechanisms underlying metabolism and transcription in corals remain unclear. In this study, untargeted metabolomics and metatranscriptomic analyses were performed to analyze the differences between unbleached and bleached Pocillopora corals during the most severe marine heatwaves. Difference analysis showed that bleached corals had significant metabolomic characteristics compared with those in unbleached corals. These differences were significant (p < 0.05) according to partial least squares discriminant analysis (PLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolites were significantly enriched in numerous pathways in bleached or unbleached corals, such as steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism. Bleaching greatly affects coral reproduction as well as the tolerance of coral symbionts to heat stress. In metatranscriptomic analysis, we observed large gene expression differences between unbleached and bleached corals. Three Gene Ontology directed acyclic graphs (DAGs) were constructed to show the significantly differentially expressed genes (DEGs). Many biological and molecular processes were significantly enriched between bleached corals to unbleached corals, such as metabolic processes, lipid metabolic processes, oxidation-reduction processes, single-organism metabolic processes, and protein metabolic processes. Metabolome and metatranscriptome analyses showed that bleaching caused substantial physiological damage to corals. This study provides insight into the metabolic and transcriptional changes that occur in corals during bleaching.


Assuntos
Antozoários , Animais , Ecossistema , Metabolômica , China
11.
ACS Appl Mater Interfaces ; 15(1): 818-829, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576097

RESUMO

During the fabrication of metal halide perovskite films, polycrystal growth and maturation are largely influenced by high-temperature annealing. However, this process would cause crystals to expand or contract at various depths in the film, leading to microscopic structural deformation and further altering the optoelectronic properties of the perovskite film. Herein, we propose an additional rinsing intermediate phase (RIP) strategy that involves precovering the perovskite film surface with a mixed organic layer prior to high-temperature annealing. The lattice distortion of the microscopic structure brought on by the driving force of the heat field is greatly reduced as a result of the modulation for the upper surface of the intermediate phase film by the rinse layer. This strategy can prepare films with high crystallinity, minor residual stresses, fewer defects, and overall film uniformity. As a result, the modified inverted perovskite solar cell (PSC) achieves a certified power conversion (PCE) of 22.76%. Meanwhile, since the rinse layer is involved in the entire crystal formation process, ion migration and buildup in the device are prevented between the interface. Consequently, the devices still retain 90% of their initial PCE, demonstrating enhanced operational stability after 500 h of operation. This method of modulating the intermediate perovskite state offers an investigation into improving the traditional method of making thin films, which is anticipated to hasten the commercialization of perovskite photovoltaics.

12.
Appl Microbiol Biotechnol ; 106(13-16): 5211-5220, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781839

RESUMO

Although the importance of intestinal microbes to aquaculture animals has been recognized, the intestinal bacteria of Sinonovacula constricta and its culture environment are rarely studied. In this study, high-throughput sequencing was used to explore the intestinal bacterial communities of pond water, sediment, and S. constricta intestine. Significance analysis and principal coordinates analysis (PCoA) showed that there were significant differences in bacterial communities among animals' intestine, pond water, and sediment (p < 0.05). Venn analysis showed that intestinal bacteria shared a considerable number of OTUs (operational taxonomic units) with the sediment and water. SourceTracker analysis suggested that the contribution of sediment to the intestinal bacteria of S. constricta was much larger than that of rearing water. The Kruskal-Wallis test showed that the dominant bacterial taxa differed significantly between animals' intestines and the pond environment, and each of them has a unique bacterial composition. A network diagram indicated the complex positive and negative interactions between intestinal bacteria at the OTU level. Furthermore, BugBase analysis indicated that the bacterial contribution to potential pathogens in the animals' intestines is similar to that in sediments, suggesting that sediment was the main source of potential pathogens in S. constricta intestine. This study provided a theoretical basis for environmental regulation and disease prevention of S. constricta in aquaculture. KEY POINTS: • Culture environment had a significant effect on the intestinal bacterial community in S. constricta. • Sediment was a major source of intestinal bacteria and potentially pathogenic bacteria. • Complex positive and negative interactions existed between intestinal bacteria.


Assuntos
Bactérias , Intestinos , Animais , Aquicultura , Bactérias/genética , Sedimentos Geológicos/microbiologia , Intestinos/microbiologia , Água , Microbiologia da Água
13.
Front Microbiol ; 12: 764974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950118

RESUMO

In this study, 16S high-throughput and metagenomic sequencing analyses were employed to explore the changes in microbial community and function with the succession of mangroves (Sonneratia alba, Rhizophora apiculata, and Bruguiera parviflora) along the Merbok river estuary in Malaysia. The sediments of the three mangroves harbored their own unique dominant microbial taxa, whereas R. apiculata exhibited the highest microbial diversity. In general, Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, Deltaproteobacteria, and Anaerolineae were the dominant microbial classes, but their abundances varied significantly among the three mangroves. Principal coordinates and redundancy analyses revealed that the specificity of the microbial community was highly correlated with mangrove populations and environmental factors. The results further showed that R. apiculata exhibited the highest carbon-related metabolism, coinciding with the highest organic carbon and microbial diversity. In addition, specific microbial taxa, such as Desulfobacterales and Rhizobiales, contributed the highest functional activities related to carbon metabolism, prokaryote carbon fixation, and methane metabolism. The present results provide a comprehensive understanding of the adaptations and functions of microbes in relation to environmental transition and mangrove succession in intertidal regions. High microbial diversity and carbon metabolism in R. apiculata might in turn facilitate and maintain the formation of climax mangroves in the middle region of the Merbok river estuary.

14.
ACS Appl Mater Interfaces ; 13(45): 54579-54588, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730948

RESUMO

SnO2 is a promising material for use as an electron transfer layer (ETL) in perovskite photovoltaic devices due to its suitable energy level alignment with the perovskite, high electron mobility, excellent optical transmission, and low-temperature processability. The development of high-quality SnO2 ETLs with a large coverage and that are pinhole-free is crucial to enhancing the performance and stability of the perovskite solar cells (PSCs). In this work, zirconium acetylacetonate (ZrAcac) was introduced to form a double-layered ETL, in which an ideal cascade energy level alignment is obtained. The surface of the resulting ZrAcac/SnO2 (Zr-SnO2) layer is compact and smooth and had a high coverage of SnO2, which enhances the electron extractability, improves ion blocking, and reduces the charge accumulation at the interface. As a result, the fill factor (FF, 80.99%), power conversion efficiency (PCE, 22.44%), and stability of the Zr-SnO2 device have been significantly improved compared to PSCs with only a SnO2 ETL. In addition, the PCE of the Zr-SnO2 device is maintained at more than 80% of the initial efficiency after 500 h of continuous illumination.

15.
Ecotoxicology ; 30(9): 1826-1840, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34618290

RESUMO

Cold events had broadly affected the survival and geographic distribution of mangrove plants. Kandelia obovata, has an excellent cold tolerance as a true halophyte and widespread mangrove species. In this study, physiological characters and comparative proteomics of leaves of K. obovata were performed under cold treatment. The physiological analysis showed that K. obovata could alleviate its cold-stress injuries through increasing the levels of antioxidants, the activities of related enzymes, as well as osmotic regulation substances (proline). It was detected 184 differentially expressed protein spots, and of 129 (70.11%) spots were identified. These proteins have been involved in several pathways such as the stress and defense, photosynthesis and photorespiration, signal transduction, transcription factors, protein biosynthesis and degradation, molecular chaperones, ATP synthesis, the tricarboxylic acid (TCA) cycle and primary metabolisms. The protein post-translational modification may be a common phenomenon and plays a key role in cold-response process in K. obovata. According to our precious work, a schematic diagram was drawn for the resistance or adaptation strategy of mangrove plants under cold stress. This study provided valuable information to understand the mechanism of cold tolerance of K. obovata.


Assuntos
Rhizophoraceae , Resposta ao Choque Frio , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Rhizophoraceae/metabolismo , Estresse Fisiológico
16.
J Environ Manage ; 300: 113754, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543965

RESUMO

With the recent growing interest of antibiotic resistance genes (ARGs) and their co-selection with heavy metal resistance genes (HMRGs), their relationship to heavy metals needs further analysis. This study examined the response of heavy metal resistant microorganisms (HMRMs) and antibiotic resistant microorganisms (ARMs) and their resistance genes (HMRGs and ARGs) to Cu and Cr stresses using metagenome. Results showed that Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, and Nitrospirae are the dominant HMRMs and ARMs, with majority of HMRMs taxa presenting changes similar to ARMs under heavy metal stresses. Types of HMRGs and ARGs changed (increased or decreased) under Cu and Cr stresses, and a significant relationship was noted between HMRGs and ARGs and their related microbe (p < 0.05). Network analysis revealed synergistic relationships between majority of HMRGs and ARGs; however, negative correlations were also noted between them. Co-occurrence of HMRGs and ARGs was mainly observed in chromosomes, and plasmids were found to provide limited opportunities for heavy metals to promote antibiotic resistance through co-selection. These findings imply that the response of HMRMs and ARMs is induced by heavy metals, and that the changes in these microbial communities are the main factor driving the diversity and abundance of HMRGs and ARGs.


Assuntos
Metais Pesados , Esgotos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Metais Pesados/toxicidade
17.
Ecotoxicology ; 30(9): 1808-1815, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34269924

RESUMO

In this study, Illumina MiSeq sequencing of the 16 S rRNA gene was used to describe the bacterial communities in the South China Sea (SCS) during the southwest monsoon period. We targeted different regions in the SCS and showed that bacterial community was driven by the effects of the river, upwelling, and mesoscale eddy through changing the environmental factors (salinity, temperature, and nutrients). Distinct bacterial communities were observed among different chemical conditions, especially between the estuary and the open sea. The abundance of Burkholderiales, Frankiales, Flavobacteriales, and Rhodobacterales dominated the estuary and its adjacent waters. Bacteria in cyclonic eddy were dominated by Methylophilales and Pseudomonadales, whereas Prochlorococcus, SAR11 clade, and Oceanospirillales had relatively high abundance in the anticyclonic eddy. Overall, the abundance of specific phylotypes significantly varied among samples with different chemical conditions. Chemical conditions probably act as a driver that shapes and controls the diversity of bacteria in the SCS. This study suggests that the interaction between microbial and environmental conditions needs to be further considered to fully understand the diversity and function of marine microbes.


Assuntos
Bactérias , Água do Mar , Bactérias/genética , China , Estuários , Oceanos e Mares , Filogenia , Rios
18.
Front Plant Sci ; 12: 760551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111172

RESUMO

Grassland is the vegetation type with the widest coverage on the Qinghai-Tibet Plateau. Under the influence of multiple factors, such as global climate change and human activities, grassland is undergoing temporal and spatially different disturbances and changes, and they have a significant impact on the grassland ecosystem of the Qinghai-Tibet Plateau. Therefore, timely and dynamic monitoring of grassland disturbances and distinguishing the reasons for the changes are essential for ecological understanding and management. The purpose of this research is to propose a knowledge-based strategy to realize grassland dynamic distribution mapping and analysis of grassland disturbance changes in the region that are suitable for the Qinghai-Tibet Plateau. The purpose of this study is to propose an analysis algorithm that uses first annual mapping and then establishes temporal disturbance rules, which is applicable to the integrated exploration of disturbance changes in highland-type grasslands. The characteristic indexes of greenness and disturbance indices in the growing period were constructed and integrated with deep neural network learning to dynamically map the grassland for many years. The overall accuracy of grassland mapping was 94.11% and that of Kappa was 0.845. The results show that the area of grassland increased by 11.18% from 2001 to 2017. Then, the grassland disturbance change analysis method is proposed in monitoring the grassland distribution range, and it is found that the area of grassland with significant disturbance change accounts for 10.86% of the total area of the Qinghai-Tibet Plateau, and the disturbance changes are specifically divided into seven types. Among them, the type of degradation after disturbance mainly occurs in Tibet, whereas the main types of vegetation greenness increase in Qinghai and Gansu. At the same time, the study finds that climate change, altitude, and human grazing activities are the main factors affecting grassland disturbance changes in the Qinghai-Tibet Plateau, and there are spatial differences.

19.
Ecotoxicology ; 29(6): 684-690, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394359

RESUMO

Tidal flooding can directly result in oxygen (O2) shortage, however the functions of root aeration in flooding tolerance and O2 dynamics within mangroves are still poorly understood. Thus, in this study, the correlations among waterlogging tolerance, root porosity and O2 movement within the plants were investigated using two mangrove species (Aegiceras corniculatum and Bruguiera gymnorrhiza) and a semi-mangrove Heritiera littoralis. Based on the present data, the species A. corniculatum and B. gymnorrhiza, which possessed higher root porosity, exhibited higher waterlogging tolerance, while H. littoralis is intolerant. Increased root porosity, leaf stoma, and total ROL were observed in the roots of A. corniculatum and B. gymnorrhiza growing in stagnant solution when compared to respective aerated controls. As for ROL spatial pattern along roots, external anaerobic condition could promote ROL from apical root regions but reduce ROL from basal roots, leading to a 'tighter barrier'. In summary, the present study indicated that the plants (e.g., A. corniculatum and B. gymnorrhiza) prioritized to ensure O2 diffusion towards root tips under waterlogging by increasing aerenchyma formation and reducing O2 leakage at basal root regions.


Assuntos
Primulaceae , Rhizophoraceae , Áreas Alagadas , Eutrofização , Oxigênio/metabolismo , Raízes de Plantas/fisiologia
20.
Ecotoxicology ; 29(6): 762-770, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32342292

RESUMO

Sediment quality caused by heavy metals was investigated in the Mirs Bay and Tolo Harbor, Hong Kong, China. Samples were collected in January and July, 2010. One-way analysis of variance showed that sediment quality variables (Fe, Zn, Mn, Pb, V, Cu, Cr, Ba, Ni and As) were significantly different (p < 0.05) among the sampling areas, whereas the average concentration of V, Eh and Ba exhibited the significant seasonal variations (p < 0.05) between January and July. The spatial pattern of heavy metals (Pb, Zn and Cu) can probably be attributed to anthropogenic and tidal flushing influence in the harbor. Both geo-accumulation index (Igeo) and enrichment factor (EF) were used to identify the metal pollution level and its related source. Pb, Zn, and Cu are considered as "polluted metal" in Tolo Harbor. Cluster analysis (CA) identified three distinct clusters with the Tolo Habor and Shatou Jiao, the inner bay and the south part of the bay. Principal component analysis (PCA) identified the spatial patterns and their affected parameters in the studying area. Results showed metals distribution in Mirs Bay and its adjacent area is principally affected by human activities such as marineculture, dumping, located mostly in Tolo Harbor and Shatou Jiao, where was closely related with anthropogenic influence. While the monitoring stations including MS13-MS16 and MS8 locating in the south part of the studying area might be corresponded to natural influence.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise , Baías , China , Análise por Conglomerados , Poluição Ambiental , Sedimentos Geológicos , Hong Kong , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...