Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1410914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027044

RESUMO

Germ cell development in mammals is a complex physiological process that involves the proliferation of primordial germ cells, meiosis, and the formation of male and female gametes. Long non-coding RNA (lncRNA) is a type of RNA with more than 200 nucleotides that does not code for proteins. A small number of lncRNAs have been shown to participate in spermatogenesis in the testes and in follicular development in the ovaries, but the role of the vast majority of lncRNAs and their molecular mechanisms still need further study. LncRNA Gm2044 was identified as a differentially expressed lncRNA in mouse spermatogenesis by microarray technology. In mouse testis, lncRNA Gm2044 can act as competing endogenous RNA to regulate SYCP1 expression in GC-2 cells derived from mouse spermatocyte cells, and it can also act as a host gene for miR-202 to regulate RBFOX2 protein expression. In female mouse ovaries, lncRNA Gm2044 regulates 17ß-estradiol synthesis through the miRNA-138-5p-Nr5a1 pathway or by interacting with EEF2. In addition, studies suggest that lncRNA Gm2044 is also involved in the progression of reproductive system diseases such as male nonobstructive azoospermia. Here, we summarize the roles and molecular mechanisms of lncRNA Gm2044 in male and female gametogenesis and its potential role in some infertility disorders.

2.
Andrology ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847152

RESUMO

BACKGROUND: PiRNA pathway factors, including evolutionarily conserved Tudor domain-containing proteins, play crucial roles in suppressing transposons and regulating post-meiotic gene expression. TDRD5 is essential for retrotransposon silencing and pachytene piRNA biogenesis; however, a causal link between TDRD5 variants and human infertility has not yet been established. OBJECTIVE: To identify the likely pathogenic variants of TDRD5 in infertile men, characterised by azoospermia or severe oligozoospermia. MATERIAL AND METHODS: Potential candidate variants were identified and confirmed using whole-exome and Sanger sequencing. Haematoxylin and eosin staining, immunofluorescence, and ultrastructural analyses were performed to investigate the structural and functional abnormalities of spermatozoa. The pathogenicity of the identified TDRD5 variants was verified using in vitro experiments. Functional effects of the C-terminal nonsense variant were assessed via histology, immunofluorescence staining, and small-RNA sequencing. Intracytoplasmic sperm injection (ICSI) was also performed to evaluate the efficacy of the clinical treatment. RESULTS: We identified a homozygous missense variant (c.3043G > A, p.A1015T) and a homozygous nonsense variant (c.2293G > T, p.E765*) of TDRD5 in two unrelated infertile men. Both patients exhibited severe oligoasthenoteratozoospermia, characterised by the presence of spermatozoa with multiple heads and/or flagella, as well as acrosomal hypoplasia. In vitro experiments revealed that the p.A1015T variant caused a diffuse distribution of TDRD5 granules, whereas the p.E765* variant led to the production of a C-terminal truncated protein with nuclear localisation, instead of the typical cytoplasmic localisation observed for the wild-type protein. Functional investigations also revealed that truncation of the C-terminal region of TDRD5 could potentially lead to a decline in the expression levels of intermitochondrial cement and chromatoid body components, such as MIWI (PIWIL1) and UPF1, and a slight decrease in the abundance of pachytene piRNA, ultimately resulting in compromised spermiogenesis. ICSI may be an effective treatment for these deficiencies. DISCUSSION AND CONCLUSION: This study implicates TDRD5 as a novel candidate gene in the pathogenesis of human male infertility, emphasising the contribution of piRNA pathway genes to male infertility. In addition, our data suggest that ICSI could be a promising treatment for infertile men harbouring TDRD5 variants.

3.
Cells Dev ; 179: 203925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797332

RESUMO

Undescended testis (UDT), known as cryptorchidism (CRY), is a common congenital disorder in which one or both testicles do not descend normally into the scrotum. A unilateral UDT model was established by inducing UDT in mice through surgery. The results showed that the testis in the UDT model group was abnormal; the lumen of the seminiferous tubule was atrophic; apoptosis, necrosis and shedding were observed in many of the germ cells; the level of sex hormones was abnormal; and mature sperm was reduced. Subsequently, transcriptome sequencing was conducted on the testicular tissue of UDT model mice. Through analysis and verification of differential genes, AZIN2 was identified as playing a key role in the decline in male fertility caused by cryptorchidism. AZIN2 expression and spermine content was down-regulated in the testis of the UDT group. We then used a combination of hypoxanthine and xanthine to create a GC-1 cell damage model. In this model, AZIN2 expression and spermine content was down-regulated. When si-Azin2 transfected GC-1 cells, cell viability and proliferation were decreased. However, in the GC-1 cell damage model transfected with Azin2 over-expressed plasmid, AZIN2 expression and spermine content was up-regulated, reversing the cell damage caused by hypoxanthine and xanthine, and restoring the proliferation ability of GC-1 cells. These results indicate that in UDT, down-regulated AZIN2 expression is a factor in testicular damage. This discussion of the connection between AZIN2 and germ cells has important clinical significance as it provides an important reference for the diagnosis and treatment of cryptorchidism.


Assuntos
Apoptose , Proteínas de Transporte , Criptorquidismo , Testículo , Animais , Masculino , Camundongos , Apoptose/genética , Linhagem Celular , Proliferação de Células , Criptorquidismo/patologia , Criptorquidismo/genética , Criptorquidismo/metabolismo , Modelos Animais de Doenças , Células Germinativas/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Testículo/metabolismo , Proteínas de Transporte/genética
4.
Zhonghua Nan Ke Xue ; 29(1): 43-48, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-37846831

RESUMO

OBJECTIVE: To investigate the outcomes of intracytoplasmic sperm injection (ICSI) in the treatment of special types of teratozoospermia such as globozoospermia, acephalic spermatozoa syndrome (ASS) and multiple morphological abnormalities of sperm flagella (MMAF). METHODS: We retrospectively analyzed the clinical data on 7 cases of globozoospermia (group A), 6 cases of ASS (group B) and 21 cases of MMAF (group C) treated by ICSI from January 2011 to January 2021, all confirmed with pathogenic or likely pathogenic gene variations. We compared the age, body mass index (BMI), sperm parameters, number of mature oocytes, and rates of fertilization, high-quality embryos, clinical pregnancy, live birth and spontaneous abortion among the three groups of patients. RESULTS: There were no statistically significant differences in the age, BMI and number of metaphase Ⅱ (MⅡ) oocytes among the three groups (P > 0.05). Sperm concentration and motility were dramatically higher (P < 0.01) while the rates of fertilization, clinical pregnancy and live birth remarkably lower in group A than in B and C (P < 0.01). No statistically significant difference was observed in the spontaneous abortion rate among the three groups (P > 0.05). CONCLUSION: ICSI can achieve relatively satisfactory outcomes of clinical pregnancy in patients with ASS or MMAF, but only a low fertilization rate or no fertilization at all in those with globozoospermia even if treated by artificial oocyte activation.


Assuntos
Aborto Espontâneo , Infertilidade Masculina , Teratozoospermia , Gravidez , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas , Teratozoospermia/genética , Infertilidade Masculina/genética , Estudos Retrospectivos , Sêmen , Espermatozoides , Oócitos
5.
J Hypertens ; 40(6): 1189-1198, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703881

RESUMO

BACKGROUND: Histone lactylation, a novel epigenetic modification induced by hypoxia and lactate, plays an important role in regulating gene expression. However, the role of histone lactylation in the pathogenesis of preeclampsia remains unknown. METHODS: Placentas from preeclamptic patients and control pregnant women were collected for protein immunoassay to detect the expression level of histone lactylation, and two trophoblast cell lines were used to simulate the effect of histone lactylation on genes. RESULTS: We found that lactate and histone lactylation levels were increased in preeclamptic placentas. In vitro, hypoxia was demonstrated to induce histone lactylation by promoting the production of lactate in human-trophoblast-derived cell line (HTR-8/SVneo) and human first-trimester extravillous trophoblast cell line (TEV-1) cells. In addition, 152 genes were found to be upregulated by both hypoxia exposure and sodium l-lactate treatment in HTR-8/SVneo cells. These genes were mainly enriched in the pathways including the response to hypoxia, cell migration and focal adhesion. Among the 152 genes, nine were upregulated in preeclamptic placentas. Most noteworthy, two upregulated fibrosis-related genes, FN1 and SERPINE1, were promoted by hypoxia through histone lactylation mediated by the production of lactate. CONCLUSIONS: The present study demonstrated the elevated levels of histone lactylation in preeclamptic placentas and identified fibrosis-related genes that were promoted by histone lactylation induced by hypoxia in trophoblast cells, which provides novel insights into the mechanism of placental dysfunction in preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Movimento Celular , Feminino , Fibrose , Histonas/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Lactatos/metabolismo , Lactatos/farmacologia , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/metabolismo
6.
Reprod Fertil Dev ; 34(12): 844-854, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35724990

RESUMO

CONTEXT: Maternal-effect genes (MEGs) play a critical role in modulating both cellular and molecular biology events in preimplantation embryonic development. Damage-specific DNA binding protein 1 (DDB1) is a gene that participates in meiotic resumption, ovulation, and embryonic stem cell maintenance. Its function in preimplantation development is not well-studied. AIMS: We aimed to explore the expression pattern, genomic heritage, and potential molecular mechanisms of DDB1 in preimplantation embryos in porcine. METHODS: In this study, RNA interference, microinjection, RT-qPCR, immunofluorescence staining and single-cell RNA sequencing were used to explore the molecular function of DDB1 in porcine preimplantation embryos. KEY RESULTS: DDB1 was found to be expressed in germinal vesicle (GV) and Meiosis II (MII) oocytes and in preimplantation embryos. We confirmed it is a MEG. DDB1 -deficient blastocysts had a significantly reduced number of trophectoderm cells, an increased apoptotic cell number and increased apoptosis index. According to a next-generation sequencing (NGS) analysis, 236 genes (131 upregulated and 105 downregulated) significantly changed in the DDB1 -deficient morula. The myeloid leukaemia factor 1 (MLF1 ) and yes-associated protein 1 (YAP1 ) expressions were significantly upregulated and downregulated respectively, in the DDB1 -deficient morula. In combination with the decreased expression of TEAD4 , CDX2 , GATA3 , OCT4 , and NANOG and the increased expression of SOX2 in the blastocyst, DDB1 may play a role in determining lineage differentiation and pluripotency maintenance. CONCLUSIONS: DDB1 is a MEG and it plays a crucial role in porcine preimplantation embryonic development. IMPLICATIONS: This study provides a theoretical basis for further understanding the molecular mechanisms of preimplantation embryo development.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Apoptose , Blastocisto/metabolismo , Diferenciação Celular/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Mórula/metabolismo , Gravidez , Suínos
8.
BMC Pregnancy Childbirth ; 22(1): 87, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35100981

RESUMO

BACKGROUND: The accumulation of reactive oxygen species (ROS) resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation that likely plays an important role in PE pathogenesis. This study aimed to investigate the expression profiles and functions of ferroptosis-related genes (FRGs) in early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE). METHODS: Gene expression data and clinical information were downloaded from the Gene Expression Omnibus (GEO) database. The "limma" R package was used to screen differentially expressed genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to verify the expression of hub FRGs in PE. RESULTS: A total of 4215 differentially expressed genes (DEGs) were identified between EOPE and preterm cases while 556 DEGs were found between LOPE and term controls. Twenty significantly different FRGs were identified in EOPE subtypes, while only 3 FRGs were identified in LOPE subtypes. Functional enrichment analysis revealed that the differentially expressed FRGs were mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as the response to hypoxia, iron homeostasis and iron ion binding process. PPI network analysis and verification by RT-qPCR resulted in the identification of the following five FRGs of interest: FTH1, HIF1A, FTL, MAPK8 and PLIN2. CONCLUSIONS: EOPE and LOPE have distinct underlying molecular mechanisms, and ferroptosis may be mainly implicated in the pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


Assuntos
Ferroptose/genética , Perfilação da Expressão Gênica , Pré-Eclâmpsia/genética , Adulto , Apoferritinas/genética , Regulação para Baixo , Feminino , Ferritinas/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Quinase 8 Ativada por Mitógeno/genética , Oxirredutases/genética , Perilipina-2/genética , Placenta/metabolismo , Gravidez , Trimestres da Gravidez/metabolismo , Análise de Componente Principal , Mapas de Interação de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...