Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 134943, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38936186

RESUMO

Developing fast, accurate and sensitive triethylamine gas sensors with low detection limits is paramount to ensure the safety of workers and the public. However, sensors based on single metal oxide materials still suffer from drawbacks such as low response sensitivity and long response and recovery times. To address these challenges, in this work, a series of mesoporous CdO/CdGa2O4 microspheres were synthesized. We optimized the sensor's sensing performance to triethylamine by fine-tuning the ratio of CdO to CdGa2O4. Among them, CdO:3CdGa2O4-based sensor demonstrates a rapid response time of 2 s to detect 100 ppm of triethylamine, with a high response value of 211 and exceptional selectivity. Furthermore, it exhibits a low detection limit of 20 ppb for triethylamine, making it suitable for practically testing fish freshness. Crucially, electron transfer between the heterojunctions increases the chemically adsorbed oxygen on the materials' surface, thereby enhancing the sensor's response sensitivity to triethylamine. This discovery provides new insights and methodologies for the design of highly efficient triethylamine gas sensors.

2.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773462

RESUMO

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Assuntos
Ponte Cardiopulmonar , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Piroptose , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Ponte Cardiopulmonar/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Edema Encefálico/prevenção & controle , Edema Encefálico/metabolismo , Edema Encefálico/enzimologia , Edema Encefálico/patologia , Anti-Inflamatórios/farmacologia , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Mediadores da Inflamação/metabolismo
3.
J Int Med Res ; 51(2): 3000605231153587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36756846

RESUMO

OBJECTIVE: DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia-reperfusion injury (LIRI). METHODS: We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. RESULTS: Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. CONCLUSIONS: Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.


Assuntos
Transplante de Pulmão , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Metilação de DNA , Pulmão/patologia , Transplante de Pulmão/efeitos adversos , Inflamação/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Oxigênio/metabolismo
4.
Acta Cir Bras ; 37(12): e371203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36651428

RESUMO

PURPOSE: Although mechanical ventilation is an essential support for acute respiratory distress syndrome (ARDS), ventilation also leads to ventilator-induced lung injury (VILI). This study aimed to estimate the effect and mechanism of Annexin A1 peptide (Ac2-26) on VILI in ARDS rats. METHODS: Thirty-two rats were randomized into the sham (S), mechanical ventilation (V), mechanical ventilation/Ac2-26 (VA), and mechanical ventilation/Ac2-26/L-NIO (VAL) groups. The S group only received anesthesia, and the other three groups received endotoxin and then ventilation for 4 h. Rats in the V, VA and VAL groups received saline, Ac2-26, and A c2-26/N5-(1-iminoethyl)-l-ornithine (L-NIO), respectively. RESULTS: All indexes deteriorated in the V, VA and VAL groups compared with the S group. Compared with V group, the PaO2/FiO2 ratio was increased, but the wet-to-dry weight ratio and protein levels in bronchoalveolar lavage fluid were decreased in the VA group. The inflammatory cells and proinflammatory factors were reduced by Ac2-26. The oxidative stress response, lung injury and apoptosis were also decreased by Ac2-26 compared to V group. All improvements of Ac2-26 were partly reversed by L-NIO. CONCLUSIONS: Ac2-26 mitigates VILI in ARDS rats and partly depended on the endothelial nitric oxide synthase pathway.


Assuntos
Anexina A1 , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Ratos , Animais , Anexina A1/farmacologia , Anexina A1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo
5.
Ann Med ; 53(1): 653-661, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34008449

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is characterized by severe local and systemic inflammation. Ac2-26, an Annexin A1 Peptide, can reduce the lung injury induced by reperfusion via the inhibition of inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 in ARDS. METHODS: Thirty-two rats were anaesthetized and randomized into four groups: sham (S), ARDS (A), ARDS/Ac2-26 (AA), and ARDS/Ac2-26/BOC-2 (AAB) groups. Rats in the S group received saline for intratracheal instillation, while rats in the other three groups received endotoxin for intratracheal instillation, in order to prepare the ARDS and inject the saline, Ac2-26, and Ac2-26 combined with BOC-2. After 24 h, the PaO2/FiO2 ratio was calculated. The lung tissue wet-to-dry weight ratio and the protein level in bronchoalveolar lavage fluid (BALF) were tested. Then, the cytokines in BALF and serum, and the inflammatory cells in BALF were investigated. Afterwards, the oxidative stress response and histological injury was evaluated. Subsequently, the epithelium was cultured and analyzed to estimate the effect of Ac2-26 on apoptosis. RESULTS: Compared to the S group, all indexes worsened in the A, AA, and AAB groups. Furthermore, compared to the S group, Ac2-26 significantly improved the lung injury and alveolar-capillary permeability, and inhibited the oxidative stress response. In addition, Ac2-26 reduced the local and systemic inflammation through the regulation of pro- and anti-inflammatory cytokines, and the decrease in inflammatory cells in BALF. Moreover, Ac2-26 inhibited the epithelium apoptosis induced by LPS through the modulation of apoptosis-regulated proteins. The protective effect of Ac2-26 on ARDS was partially reversed by the FPR inhibitor, BOC-2. CONCLUSION: Ac2-26 reduced the lung injury induced by LPS, promoted alveolar-capillary permeability, ameliorated the local and systemic inflammation, and inhibited the oxidative stress response and apoptosis. The protection of Ac2-26 on ARDS was mainly dependent on the FPR pathway.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Citocinas , Humanos , Inflamação , Lipopolissacarídeos , Pulmão , Ratos , Receptores de Formil Peptídeo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...