RESUMO
Specific protein 1 (Sp1) is pivotal in sustaining baseline transcription as well as modulating cell signaling pathways and transcription factors activity. Through interactions with various proteins, especially transcription factors, Sp1 controls the expression of target genes, influencing numerous biological processes. Numerous studies have confirmed Sp1's significant regulatory role in the pathogenesis of cardiovascular disorders. Post-translational modifications (PTMs) of Sp1, such as phosphorylation, ubiquitination, acetylation, glycosylation, SUMOylation, and S-sulfhydration, can enhance or modify its transcriptional activity and DNA-binding stability. These modifications also regulate Sp1 expression across different cell types. Sp1 is crucial in regulating non-coding gene expression and the activity of proteins in response to pathophysiological stimuli. Understanding Sp1 PTMs advances our knowledge of cell signaling pathways in controlling Sp1 stability during cardiovascular disease onset and progression. It also aids in identifying novel pharmaceutical targets and biomarkers essential for preventing and managing cardiovascular diseases.
RESUMO
Specific protein 1 (Sp1) is central to regulating transcription factor activity and cell signaling pathways. Sp1 is highly associated with the poor prognosis of various cancers; it is considered a non-oncogene addiction gene. The function of Sp1 is complex and contributes to regulating extensive transcriptional activity, apart from maintaining basal transcription. Sp1 activity and stability are affected by post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, glycosylation, and SUMOylation. These modifications help to determine genetic programs that alter the Sp1 structure in different cells and increase or decrease its transcriptional activity and DNA binding stability in response to pathophysiological stimuli. Investigating the PTMs of Sp1 will contribute to a deeper understanding of the mechanism underlying the cell signaling pathway regulating Sp1 stability and the regulatory mechanism by which Sp1 affects cancer progression. Furthermore, it will facilitate the development of new drug targets and biomarkers, thereby elucidating considerable implications in the prevention and treatment of cancer.
RESUMO
P65, a protein subunit of NF-κB, is a widely distributed transcription factor in eukaryotic cells and exerts diverse regulatory functions. Post-translational modifications such as phosphorylation, acetylation, methylation and ubiquitination modulate p65 transcriptional activity and function, impacting various physiological and pathological processes including inflammation, immune response, cell death, proliferation, differentiation and tumorigenesis. The intricate interplay between these modifications can be antagonistic or synergistic. Understanding p65 post-translational modifications not only elucidates NF-κB pathway regulation but also facilitates the identification of therapeutic targets and diagnostic markers for associated clinical conditions.
RESUMO
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, oxidative stress, apoptosis, and autophagy are key pathophysiological mechanisms underlying ALI. Hydrogen sulfide (H2S) and sulfur dioxide (SO2) are sulfur-containing gas signaling molecules that can mitigate these pathogenic processes by modulating various signaling pathways, such as toll-like receptor 4 (TLR4)/nod-like receptor protein 3 (NLRP3), extracellular signal-regulating protein kinase 1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), thereby conferring protection against ALI. Given the limited clinical effectiveness of prevailing ALI treatments, investigation of the modulation of sulfur-containing gas signaling molecules (H2S and SO2) in ALI is imperative. This article presents an overview of the regulatory pathways of sulfur-containing gas signaling molecules in ALI animal models induced by various stimuli, such as lipopolysaccharide, gas inhalation, oleic acid, and ischemia-reperfusion. Furthermore, this study explored the therapeutic prospects of diverse H2S and SO2 donors for ALI, stemming from diverse etiologies. The aim of the present study was to establish a theoretical framework, in order to promote the new treatment of ALI.
RESUMO
Ischemia-reperfusion (I/R) injury, a prevalent pathological condition in medical practice, presents significant treatment challenges. Hydrogen sulfide (H2S), acknowledged as the third gas signaling molecule, profoundly impacts various physiological and pathophysiological processes. Extensive research has demonstrated that H2S can mitigate I/R damage across multiple organs and tissues. This review investigates the protective effects of H2S in preventing I/R damage in the heart, brain, liver, kidney, intestines, lungs, stomach, spinal cord, testes, eyes, and other tissues. H2S provides protection against I/R damage by alleviating inflammation and endoplasmic reticulum stress; inhibiting apoptosis, oxidative stress, and mitochondrial autophagy and dysfunction; and regulating microRNAs. Significant advancements in understanding the mechanisms by which H2S reduces I/R damage have led to the development and synthesis of H2S-releasing agents such as diallyl trisulfide-loaded mesoporous silica nanoparticles (DATS-MSN), AP39, zofenopril, and ATB-344, offering a new therapeutic avenue for I/R injury.
Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/farmacologia , Humanos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacosRESUMO
As an important gas signaling molecule, hydrogen sulfide (H2S) affects multiple organ systems, including the nervous, cardiovascular, digestive, and genitourinary, reproductive systems. In particular, H2S not only regulates female reproductive function but also holds great promise in the treatment of male reproductive diseases and disorders, such as erectile dysfunction, prostate cancer, varicocele, and infertility. In this review, we summarize the relationship between H2S and male reproductive organs, including the penis, testis, prostate, vas deferens, and epididymis. As lower urinary tract symptoms have a significant impact on penile erection disorders, we also address the potential ameliorative effects of H2S in erectile dysfunction resulting from bladder disease. Additionally, we discuss the regulatory role of H2S in cavernous smooth muscle relaxation, which involves the NO/cGMP pathway, the RhoA/Rho-kinase pathway, and K+ channel activation. Recently, various compounds that can alleviate erectile dysfunction have been reported to be at least partly dependent on H2S. Therefore, understanding the role of H2S in the male reproductive system may help develop novel strategies for the clinical treatment of male reproductive system diseases.
Assuntos
Genitália Masculina , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Humanos , Masculino , Genitália Masculina/metabolismo , Animais , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Transdução de SinaisRESUMO
Hydrogen sulfide (H2S) is recognized as the third gasotransmitter, after nitric oxide (NO) and carbon monoxide (CO). It is known for its cardioprotective properties, including the relaxation of blood vessels, promotion of angiogenesis, regulation of myocardial cell apoptosis, inhibition of vascular smooth muscle cell proliferation, and reduction of inflammation. Additionally, abnormal H2S generation has been linked to the development of cardiovascular diseases (CVD), such as pulmonary hypertension, hypertension, atherosclerosis, vascular calcification, and myocardial injury. MicroRNAs (miRNAs) are non-coding, conserved, and versatile molecules that primarily influence gene expression by repressing translation and have emerged as biomarkers for CVD diagnosis. Studies have demonstrated that H2S can ameliorate cardiac dysfunction by regulating specific miRNAs, and certain miRNAs can also regulate H2S synthesis. The crosstalk between miRNAs and H2S offers a novel perspective for investigating the pathophysiology, prevention, and treatment of CVD. The present analysis outlines the interactions between H2S and miRNAs and their influence on CVD, providing insights into their future potential and advancement.
Assuntos
Doenças Cardiovasculares , Sulfeto de Hidrogênio , MicroRNAs , Sulfeto de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Animais , Regulação da Expressão Gênica , Biomarcadores/metabolismoRESUMO
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings.
Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Humanos , Feminino , Masculino , Gravidez , Animais , Óxido Nítrico/metabolismo , Reprodução/efeitos dos fármacosRESUMO
The pathological mechanisms and treatments of osteoarthritis (OA) are critical topics in medical research. This paper reviews the regulatory mechanisms of hydrogen sulfide (H2S) in OA and the therapeutic potential of H2S donors. The review highlights the importance of changes in the endogenous H2S pathway in OA development and systematically elaborates on the role of H2S as a third gaseous transmitter that regulates inflammation, oxidative stress, and pain associated with OA. It also explains how H2S can lessen bone and joint inflammation by inhibiting leukocyte adhesion and migration, reducing pro-inflammatory mediators, and impeding the activation of key inflammatory pathways such as nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). Additionally, H2S is shown to mitigate mitochondrial dysfunction and endoplasmic reticulum stress, and to modulate Nrf2, NF-κB, PI3K/Akt, and MAPK pathways, thereby decreasing oxidative stress-induced chondrocyte apoptosis. Moreover, H2S alleviates bone and joint pain through the activation of Kv7, K-ATP, and Nrf2/HO-1-NQO1 pathways. Recent developments have produced a variety of H2S donors, including sustained-release H2S donors, natural H2S donors, and synthetic H2S donors. Understanding the role of H2S in OA can lead to the discovery of new therapeutic targets, while innovative H2S donors offer promising new treatments for patients with OA.
RESUMO
BACKGROUND: Abnormal glucose metabolism is one of the determinants of maintaining malignant characteristics of cancer. Targeting cancer metabolism is regarded as a new strategy for cancer treatment. Our previous studies have found that TOP1MT is a crucial gene that inhibits glycolysis and cell metastasis of gastric cancer (GC) cells, but the mechanism of its regulation of glycolysis remains unclear. METHODS: Transcriptome sequencing data, clinic-pathologic features of GC from a variety of public databases, and WGCNA were used to identify novel targets of TOP1MT. Immunohistochemical results of 250 patients with GC were used to analyze the relative expression relationship between TOP1MT and PDK4. The function of TOP1MT was investigated by migration assays and sea-horse analysis in vitro. RESULTS: We discovered a mitochondrial topoisomerase I, TOP1MT, which correlated with a higher risk of metastasis. Functional experiments revealed that TOP1MT deficiency promotes cell migration and glycolysis through increasing PDK4 expression. Additionally, the stimulating effect of TOP1MT on glycolysis may be effectively reversed by PDK4 inhibitor M77976. CONCLUSIONS: In brief, our work demonstrated the critical function of TOP1MT in the regulation of glycolysis by PDK4 in gastric cancer. Inhibiting glycolysis and limiting tumor metastasis in GC may be accomplished by suppressing PDK4.
RESUMO
Hydrogen sulfide (H2S), a colorless exhaust gas, has been traditionally considered an air pollutant. However, recent studies have revealed that H2S functions as a novel gas signaling molecule, exerting diverse biological effects on various systems, including the cardiovascular, digestive, and nervous systems. Thus, H2S is involved in various pathophysiological processes. As H2S affects reproductive function, it has potential therapeutic implications in reproductive system diseases. This review examined the role of H2S in various female reproductive organs, including the ovary, fallopian tube, vagina, uterus, and placenta. Additionally, the regulatory function of H2S in the female reproductive system has been discussed to provide useful insights for developing clinical therapeutic strategies for reproductive diseases.
Assuntos
Sistema Cardiovascular , Sulfeto de Hidrogênio , Feminino , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Ovário , Útero , Transdução de SinaisRESUMO
Hydrogen sulfide (H2S) and sulfur dioxide (SO2), recognized as endogenous sulfur-containing gas signaling molecules, were the third and fourth molecules to be identified subsequent to nitric oxide and carbon monoxide (CO), and exerted diverse biological effects on the cardiovascular system. However, the exact mechanisms underlying the actions of H2S and SO2 have remained elusive until now. Recently, novel post-translational modifications known as S-sulfhydration and S-sulfenylation, induced by H2S and SO2 respectively, have been proposed. These modifications involve the chemical alteration of specific cysteine residues in target proteins through S-sulfhydration and S-sulfenylation, respectively. H2S induced S-sulfhydrylation can have a significant impact on various cellular processes such as cell survival, apoptosis, cell proliferation, metabolism, mitochondrial function, endoplasmic reticulum stress, vasodilation, anti-inflammatory response and oxidative stress in the cardiovascular system. Alternatively, S-sulfenylation caused by SO2 serves primarily to maintain vascular homeostasis. Additional research is warranted to explore the physiological function of proteins with specific cysteine sites, despite the considerable advancements in comprehending the role of H2S-induced S-sulfhydration and SO2-induced S-sulfenylation in the cardiovascular system. The primary objective of this review is to present a comprehensive examination of the function and potential mechanism of S-sulfhydration and S-sulfenylation in the cardiovascular system. Proteins that undergo S-sulfhydration and S-sulfenylation may serve as promising targets for therapeutic intervention and drug development in the cardiovascular system. This could potentially expedite the future development and utilization of drugs related to H2S and SO2.
RESUMO
The Keap1-Nrf2 signaling pathway plays a crucial role in cellular defense against oxidative stress-induced damage. Its activation entails the expression and transcriptional regulation of several proteins involved in detoxification and antioxidation processes within the organism. Keap1, serving as a pivotal transcriptional regulator within this pathway, exerts control over the activity of Nrf2. Various post-translational modifications (PTMs) of Keap1, such as alkylation, glycosylation, glutathiylation, S-sulfhydration, and other modifications, impact the binding affinity between Keap1 and Nrf2. Consequently, this leads to the accumulation of Nrf2 and its translocation to the nucleus, and subsequent activation of downstream antioxidant genes. Given the association between the Keap1-Nrf2 signaling pathway and various diseases such as cancer, neurodegenerative disorders, and diabetes, comprehending the post-translational modification of Keap1 not only deepens our understanding of Nrf2 signaling regulation but also contributes to the identification of novel drug targets and biomarkers. Consequently, this knowledge holds immense importance in the prevention and treatment of diseases induced by oxidative stress.
RESUMO
Ulcerative colitis (UC) is a complex inflammatory bowel disease (IBD) associated with mitochondrial function. Atractylenolide III (AT III) is a natural product with anti-inflammatory effects. The aim of this work is to investigate the protective effect of AT III on UC and its underlying mechanisms. Herein, dextran sulfate sodium- (DSS-) induced mice and lipopolysaccharide- (LPS-) stimulated intestinal epithelial cells (IEC-6) were employed to mimic UC pathologies in vivo and in vitro. The results showed that in DSS-induced mice, AT III significantly reversed the body weight loss, colon length reduction, disease activity index (DAI) increase, and histological damage. The production of proinflammatory factors and reduction of antioxidants in colitis were suppressed by AT III. In addition, we demonstrated that AT III attenuated the intestinal epithelial barrier destruction and mitochondrial dysfunction induced by DSS, which was similar to the in vitro results in LPS-treated IEC-6 cells. The protein levels of p-AMPK, SIRT1, and PGC-1α along with acetylated PGC-1α were also upregulated by AT III in vivo and in vitro. In conclusion, these findings support that AT III may protect against mitochondrial dysfunction by the activation of the AMPK/SIRT1/PGC-1α signaling pathway during UC development.
Assuntos
Colite Ulcerativa , Colite , Lactonas , Sesquiterpenos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Lactonas/uso terapêutico , Lipopolissacarídeos/toxicidade , Camundongos , Mitocôndrias/metabolismo , Sesquiterpenos/uso terapêutico , Sirtuína 1/metabolismoRESUMO
Weeds infest rice causing high yield losses, leading to the increasing use of herbicides for weed control. However, many weeds have evolved resistance to common commercial herbicides, including penoxsulam, metamifop and quinclorac. This study investigated the weed control effect and the phytotoxicity mechanism of florpyrauxifen-benzyl, a novel synthetic auxin herbicide registered for weed management in rice fields in China. The greenhouse study showed that florpyrauxifen-benzyl was highly efficient (GR50 < 6 and GR90 < 15 g a.i ha-1) at controlling 10 weed species commonly found in rice fields, including penoxsulam- and quinclorac- resistant(R) biotypes of Echinochloa Beauv. and bensulfuron-methyl-R biotype of Ammannia arenaria. The typical plant hormone content showed that following florpyrauxifen-benzyl treatment, indole-3-acetic acid (IAA) production changed only slightly at 12 h, while abscisic acid (ABA) production increased with time in the treated group, whose content was significantly higher than that of the control. Besides, ethylene biosynthesis was stimulated by florpyrauxifen-benzyl, ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) content, and 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO) activities, which evidently increased in the treated group, and ethylene peaked at 36 h. For the antioxidant enzyme activities and malondialdehyde (MDA) content in the treated group, results showed that MDA content continuously increased with time and was greater than that in the untreated group at 48 h and 72 h, superoxide dismutase (SOD) activity changed with exposure time and was significantly higher in the treatment group than the control at 48 h. A similar phenomenon was observed in peroxidase (POD) activity, which reached a peak at 48 h, and no distinct difference in catalase (CAT) activity was observed among groups except for the higher activity in the treated groups than control at 36 h and 48 h. Our results showed that that the stimulation ethylene biosynthesis and accumulation of ABA and reactive oxygen species (ROS) play important roles in the phytotoxicity mechanism of florpyrauxifen-benzyl in plants. Our findings demonstrate the potential of florpyrauxifen-benzyl to provide an alternative weed management strategy for rice fields.
Assuntos
Echinochloa , Herbicidas , Resistência a Herbicidas , Herbicidas/toxicidade , Plantas Daninhas , Controle de Plantas DaninhasRESUMO
OBJECTIVES: The emergence of colistin-resistant Klebsiella pneumoniae (CoRKp) is a serious public-health issue as colistin is the last line of defence against infections caused by multidrug-resistant Gram-negative bacteria. In this study, we generated a draft genome sequence for CoRKp strain P094-1 isolated from a sputum sample of an infected patient. METHODS: Whole genomic DNA of strain P094-1 was sequenced using a PacBio sequencing platform. Generated reads were de novo assembled using Hierarchical Genome Assembly Process (HGAP) v.3.0. Colistin resistance-related genes were predicted from the genome sequence and were validated experimentally. RESULTS: The genome of strain P094-1 lacked a 20.3-kb region, including complete deletion of the mgrB gene. Molecular and genome sequencing-based analyses revealed that the observed colistin resistance of P094-1 could not be attributed to plasmid-borne genes mcr-1 to mcr-9 or to alteration of the pmr and pho operons (deletions, insertions or substitutions), but was conferred by an insertion sequence 1 (IS1)-induced total deletion of mgrB. CONCLUSION: This is the first reported whole-genome sequence of an unusual CoRKp isolate containing an IS1-induced deletion of mgrB.
Assuntos
Colistina , Infecções por Klebsiella , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Genômica , Humanos , Klebsiella pneumoniae/genéticaRESUMO
Application of the anticancer drug doxorubicin (DOX) is restricted due to its adverse, cardiotoxic side effects, which ultimately result in heart failure. Moreover, there are a limited number of chemical agents for the clinical prevention of DOX-induced cardiotoxicity. Based on the theories of traditional Chinese medicine (TCM) on chronic heart failure (CHF), Shenlijia (SLJ), a new TCM compound, has been developed to fulfill multiple functions, including improving cardiac function and inhibiting cardiac fibrosis. In the present study, the protective effects and molecular mechanisms of SLJ on DOX-induced CHF rats were investigated. The CHF rat model was induced by intraperitoneal injection of DOX for six weeks with the cumulative dose of 15 mg/kg. All rats were then randomly divided into the control, CHF, CHF + SLJ (3.0 g/kg per day), and CHF + captopril (3.8 mg/kg per day) groups and treated for further four weeks. Echocardiography and the assessment of hemodynamic parameters were performed to evaluate heart function. A protein chip was applied to identify proteins with diagnostic values that were differentially expressed following SLJ treatment. The data from these investigations showed that SLJ treatment significantly improved cardiac function by increasing the left ventricular ejection fraction, improving the hemodynamic index, and inhibiting interstitial fibrosis. Protein chip analysis revealed that SLJ upregulated MCP-1, MDC, neuropilin-2, TGF-ß3, thrombospondin, TIE-2, EG-VEGF/PK1, and TIMP-1/2/3 expressions and downregulated that of MMP-13. In addition, immunohistochemistry and western blot results further confirmed that SLJ promoted TIMP-1/2/3 and inhibited MMP-13 expression. The results of the present study suggest that SLJ was effective against DOX-induced CHF rats and is related to the improvement of heart function and ultrastructure and the inhibition of myocardial fibrosis.
RESUMO
Gouty arthritis (GA) is an inflammatory disease owing to the accumulation of monosodium urate (MSU) in joints, leading to redness and burning pain. In this study, the effect of Zisheng Shenqi Decoction (ZSD) on a rat model of MSU-induced GA was investigated. ZSD obviously diminished the right paw thickness, the degree of the swelling of the paw, and the infiltration of the inflammatory cell, as well as cartilage erosion, and widened the joint space in MSU-treated rats. Besides, MSU remarkably elevated the release of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and IL-18; however, ZSD treatment dose dependently lowered these levels and resulted in a significant decrease in articular elastase activity. Also, ZSD administration increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) but declined malondialdehyde (MDA) and nitrogen monoxide (NO) contents. Importantly, western blotting analysis revealed that NOD-like receptor protein 3 (NLRP3), cleaved caspase-1, IL-1ß, nuclear factor-E2-related factor 2 (Nrf2) in the cytoplasm, phosphorylated mammalian target of rapamyclin (p-mTOR), and p62 expressions were downregulated, whereas the levels of nuclear Nrf2, phosphorylated AMP-activated protein kinase (p-AMPK), Beclin-1, and LC3II/I were upregulated by ZSD. Immunofluorescence assay indicated that ZSD evidently promoted nuclear translocation of LC3. Taken together, ZSD inhibited inflammation and oxidative stress and facilitated autophagy through the activation of the AMPK pathway and suppression of the mTOR signaling pathway, demonstrating its potential for preventing and curing GA.
RESUMO
Context: Therapeutic doxorubicin administration is restricted as this anticancer drug may be cardiotoxic. The traditional Chinese medicine qiliqiangxin has been approved for clinical treatment of chronic heart failure.Objective: To explore the protective effects and molecular mechanisms of qiliqiangxin on doxorubicin-induced congestive heart failure (CHF) in rats.Materials and methods: A CHF rat model was established via intraperitoneal DOX injections (2.5 mg/kg/week) for 6 weeks. The rats were randomly assigned to control, CHF, CHF + QL (1.0 g/kg/d), or captopril (3.8 mg/kg/d) treatment groups (n = 10) for 4 weeks. MicroRNA sequencing elucidated the molecular mechanisms of qiliqiangxin on doxorubicin-induced CHF in rats.Results: Unlike in the CHF group, QL significantly reduced Bax:Bcl-2 (2.05 ± 0.23 vs. 0.94 ± 0.09, p < 0.05) and the levels of collagen I (0.19 ± 0.02 vs. 0.15 ± 0.01, p < 0.05), collagen III (0.19 ± 0.02 vs. 0.14 ± 0.02, p < 0.05), TGF-ß1 (5.28 ± 0.89 vs. 2.47 ± 0.51, p < 0.05), Smad3 (1.23 ± 0.12 vs. 0.78 ± 0.09, p < 0.05), MMP-2 (0.89 ± 0.01 vs. 0.53 ± 0.05, p < 0.05), and TIMP-2 (0.24 ± 0.03 vs. 0.44 ± 0.03, p < 0.05). QL also upregulated TGF-ß3 (0.65 ± 0.06 vs. 0.96 ± 0.10, p < 0.05) and Smad7 (0.09 ± 0.01 vs. 0.19 ± 0.023, p < 0.05). Moreover, Smad3 was a target of miR-345-3p.Discussion and Conclusions: The beneficial effects of QL on DOX-induced CHF in rats are mediated by reduction in myocardial fibrosis, promotion of TGF-ß3/Smad7, and inhibition of TGF-ß1/Smad3. QL may also modulate specific miRNAs. These results provide evidence that QL might be an effective treatment for DOX-induced CHF.
Assuntos
Doxorrubicina/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/patologia , Masculino , Ratos , Ratos Wistar , Remodelação Ventricular/fisiologiaRESUMO
Echinochloa crus-galli var. zelayensis, a variety of E. crus-galli (L.) Beauv. has evolved resistance to quinclorac, but the mechanism of resistance remains unclear. Treatments with quinclorac, cause rapid leaf chlorosis, continuous decrease in the chlorophyll content to about 0.4 times, and rapid decline in biomass by about 20% in sensitive E. crus-galli var. zelayensis within 72â¯h. Then transcriptome sequencing for quinclorac-sensitive and -resistant E. crus-galli var. zelayensis biotypes was performed, and more differentially expressed genes (DEGs) were observed in the sensitive biotype (1115 DEGs, including 548 up-regulated and 567 down-regulated) than that in the resistant biotype (901 DEGs, including 373 up-regulated and 528 down-regulated). Thirty-four photosynthesis-related candidate genes were screened, in which twenty-nine genes were more affected by quinclorac in the sensitive biotype than that in the resistant biotype. The qPCR verification involving more sampling time-points revealed that on continuous treatment with 50⯵â¯mol/L quinclorac, expression levels of 34 photosynthesis-related genes dropped significantly by 2-1000 times within 12â¯h in the sensitive biotype. Following significant or marginal decline in expression at 6â¯h after quinclorac treatment, recovery of the expression levels of 21 genes was observed after 12â¯h and the expression levels of another 13 genes remained unaltered in the resistant biotype. It is hypothesized that the sustained sharp decrease in the expression of photosynthesis-related genes is a major cause of death in the sensitive biotype. Further, it is inferred that there may be a regulatory mechanism in the resistant biotype that allowed the expression of these genes to be significantly unaffected or to rapidly recover, in turn preventing severe damage to the plants caused by quinclorac.