Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959497

RESUMO

Dissecting the photochemical reactivity of metal ions is a significant contribution to understanding secondary pollutant formation, as they have a role to be reckoned with atmospheric chemistry. However, their photochemical reactivity has received limited attention within the active nitrogen cycle, particularly at the gas-solid interface. In this study, we delve into the contribution of magnesium ion (Mg2+) and ferric ion (Fe3+) to nitrate decomposition on the surface of photoactive mineral dust. Under simulated sunlight irradiation, the observed NOX production rate differs by an order of magnitude in the presence of Mg2+ (6.02 × 10-10 mol s-1) and Fe3+ (2.07 × 10-11 mol s-1). The markedly decreased fluorescence lifetime induced by Mg2+ and the change in the valence of Fe3+ revealed that Mg2+ and Fe3+ significantly affect the concentration of nitrate decomposition products by distinct photochemical reactivity with photogenerated electrons. Mg2+ promotes NOX production by accelerating charge transfer, while Fe3+ hinders nitrate decomposition by engaging in a redox cyclic reaction with Fe2+ to consume photogenerated carriers continuously. Furthermore, when Fe3+ coexists with other metal ions (e.g., Mg2+, Ca2+, Na+, and K+) and surpasses a proportion of approximately 12%, the photochemical reactivity of Fe3+ tends to be dominant in depleting photogenerated electrons and suppressing nitrate decomposition. Conversely, below this threshold, the released NOX concentration increases sharply as the proportion of Fe3+ decreases. This research offers valuable insights into the role of metal ions in nitrate transformation and the generation of reactive nitrogen species, contributing to a deep understanding of atmospheric photochemical reactions.

2.
Proc Natl Acad Sci U S A ; 121(25): e2322107121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857396

RESUMO

The photocatalytic CO2-to-CH4 conversion involves multiple consecutive proton-electron coupling transfer processes. Achieving high CH4 selectivity with satisfactory conversion efficiency remains challenging since the inefficient proton and electron delivery path results in sluggish proton-electron transfer kinetics. Herein, we propose the fabrication of atomically adjacent anion-cation vacancy as paired redox active sites that could maximally promote the proton- and electron-donating efficiency to simultaneously enhance the oxidation and reduction half-reactions, achieving higher photocatalytic CO2 reduction activity and CH4 selectivity. Taking TiO2 as a photocatalyst prototype, the operando electron paramagnetic resonance spectra, quasi in situ X-ray photoelectron spectroscopy measurements, and high-angle annular dark-field-scanning transmission electron microscopy image analysis prove that the VTi on TiO2 as initial sites can induce electron redistribution and facilitate the escape of the adjacent oxygen atom, thereby triggering the dynamic creation of atomically adjacent dual-vacancy sites during photocatalytic reactions. The dual-vacancy sites not only promote the proton- and electron-donating efficiency for CO2 activation and protonation but also modulate the coordination modes of surface-bound intermediate species, thus converting the endoergic protonation step to an exoergic reaction process and steering the CO2 reduction pathway toward CH4 production. As a result, these in situ created dual active sites enable nearly 100% CH4 selectivity and evolution rate of 19.4 µmol g-1 h-1, about 80 times higher than that of pristine TiO2. Thus, these insights into vacancy dynamics and structure-function relationship are valuable to atomic understanding and catalyst design for achieving highly selective catalysis.

3.
ACS Sens ; 9(5): 2558-2566, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38664913

RESUMO

The noble metal-loaded strategy can effectively improve the gas-sensing performances of metal oxide sensors. However, the gas-solid interfacial interactions between noble metal-loaded sensing materials and gaseous species remain unclear, posing a significant challenge in correlating the physical and chemical processes during gas sensing. In this study, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and in situ Raman spectroscopy were conducted to collaboratively investigate the interfacial interactions involved in the ethanol gas-sensing processes over Co3O4 and Ag-loaded Co3O4 sensors. In situ DRIFTS revealed differences in the compositions and quantities of sensing reaction products, as well as in the adsorption-desorption interactions of surface species, among Co3O4 and Ag-loaded Co3O4 materials. In parallel, in situ Raman spectroscopy demonstrated that the ethanol atmosphere can modulate the electron scattering of Ag-loaded Co3O4 materials but not of raw Co3O4. In situ experimental results revealed the intrinsic reason for the highly enhanced sensing performances of the Ag-loaded Co3O4 sensors toward ethanol gas, including a decreased optimal working temperature (from 250 to 150 °C), an improved gas response level (from 24 to 257), and accelerated gas recovery dynamics. This work provides an effective platform to investigate the interfacial interactions of sensing processes at the molecular level and further advances the development of high-performance gas sensors.


Assuntos
Cobalto , Etanol , Óxidos , Prata , Análise Espectral Raman , Cobalto/química , Óxidos/química , Prata/química , Etanol/química , Etanol/análise , Análise Espectral Raman/métodos , Gases/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Proc Natl Acad Sci U S A ; 121(9): e2315956121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377201

RESUMO

Photo-catalytic CO2 reduction with perovskite quantum dots (QDs) shows potential for solar energy storage, but it encounters challenges due to the intricate multi-electron photoreduction processes and thermodynamic and kinetic obstacles associated with them. This study aimed to improve photo-catalytic performance by addressing surface barriers and utilizing multiple-exciton generation in perovskite QDs. A facile surface engineering method was employed, involving the grafting of ferrocene carboxylic acid (FCA) onto CsPbBr3 (CPB) QDs, to overcome limitations arising from restricted multiple-exciton dissociation and inefficient charge transfer dynamics. Kelvin Probe Force Microscopy and XPS spectral confirmed successfully creating an FCA-modulated microelectric field through the Cs active site, thus facilitating electron transfer, disrupting surface barrier energy, and promoting multi-exciton dissociations. Transient absorption spectroscopy showed enhanced charge transfer and reduced energy barriers, resulting in an impressive CO2-to-CO conversion rate of 132.8 µmol g-1 h-1 with 96.5% selectivity. The CPB-FCA catalyst exhibited four-cycle reusability and 72 h of long-term stability, marking a significant nine-fold improvement compared to pristine CPB (14.4 µmol g-1 h-1). These results provide insights into the influential role of FCA in regulating intramolecular charge transfer, enhancing multi-exciton dissociation, and improving CO2 photoreduction on CPB QDs. Furthermore, these findings offer valuable knowledge for controlling quantum-confined exciton dissociation to enhance CO2 photocatalysis.

5.
Sci Bull (Beijing) ; 69(7): 901-912, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38302334

RESUMO

Perovskite quantum dots (PQDs) hold immense potential as photocatalysts for CO2 reduction due to their remarkable quantum properties, which facilitates the generation of multiple excitons, providing the necessary high-energy electrons for CO2 photoreduction. However, harnessing multi-excitons in PQDs for superior photocatalysis remains challenging, as achieving the concurrent dissociation of excitons and interparticle energy transfer proves elusive. This study introduces a ligand density-controlled strategy to enhance both exciton dissociation and interparticle energy transfer in CsPbBr3 PQDs. Optimized CsPbBr3 PQDs with the regulated ligand density exhibit efficient photocatalytic conversion of CO2 to CO, achieving a 2.26-fold improvement over unoptimized counterparts while maintaining chemical integrity. Multiple analytical techniques, including Kelvin probe force microscopy, temperature-dependent photoluminescence, femtosecond transient absorption spectroscopy, and density functional theory calculations, collectively affirm that the proper ligand termination promotes the charge separation and the interparticle transfer through ligand-mediated interfacial electron coupling and electronic interactions. This work reveals ligand density-dependent variations in the gas-solid photocatalytic CO2 reduction performance of CsPbBr3 PQDs, underscoring the importance of ligand engineering for enhancing quantum dot photocatalysis.

6.
Research (Wash D C) ; 6: 0244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808179

RESUMO

Photocatalytic reduction of CO2 into fuels provides a prospective tactic for regulating the global carbon balance utilizing renewable solar energy. However, CO2 molecules are difficult to activate and reduce due to the thermodynamic stability and chemical inertness. In this work, we develop a novel strategy to promote the adsorption and activation of CO2 molecules via the rapid energy exchange between the photoinduced Br vacancies and CO2 molecules. Combining in situ continuous wave-electron paramagnetic resonance (cw-EPR) and pulsed EPR technologies, we observe that the spin-spin relaxation time (T2) of BiOBr is decreased by 198 ns during the CO2 photoreduction reaction, which is further confirmed by the broadened EPR linewidth. This result reveals that there is an energy exchange interaction between in situ formed Br vacancies and CO2 molecules, which promotes the formation of high-energy CO2 molecules to facilitate the subsequent reduction reaction. In addition, theoretical calculations indicate that the bended CO2 adsorption configuration on the surface of BiOBr with Br vacancies caused the decrease of the lowest unoccupied molecular orbital of the CO2 molecule, which makes it easier for CO2 molecules to acquire electrons and get activated. In situ diffuse reflectance infrared Fourier transform spectroscopy further shows that the activated CO2 molecules are favorably converted to key intermediates of COOH*, resulting in a CO generation rate of 9.1 µmol g-1 h-1 and a selectivity of 100%. This study elucidates the underlying mechanism of CO2 activation at active sites and deepens the understanding of CO2 photoreduction reaction.

7.
J Hazard Mater ; 444(Pt B): 130436, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435041

RESUMO

Surface hydroxyl groups play a decisive role in the generation of hydroxyl radicals with stronger oxidizing ability, which is indispensable in photocatalytic VOCs removal, especially under the condition of low humidity. In this work, non-noble amorphous SnO2 decorated ZnSn(OH)6 (ZSH) was synthesized by an in-situ method. The charge transport, reactant activation and hydroxyl polarization are enhanced through decoration of amorphous SnO2 on ZSH. Combined with the designed experiment, in-situ EPR, DTF calculation and in-situ DRIFTS, the role and mechanism of interfacial hydroxyl polarization are revealed on SnO2 decorated ZnSn(OH)6. Compared with pristine ZSH and noble-metal modified ZSH, the toluene degradation rate of amorphous SnO2 decorated ZSH is increased by 13.0 and 3.8 times, and the toluene mineralization rate is increased by 5.2 and 2.2 times. The ZSH-24 sample maintains a high toluene degradation activity after 6 cyclic utilization without catalyst deactivation. This work emphasizes the role of non-noble metal and the origin of hydroxyl group polarization on ZnSn(OH)6 for photocatalytic VOCs mineralization.

8.
J Colloid Interface Sci ; 630(Pt B): 704-713, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347097

RESUMO

The degradation and mineralization of volatile organic compounds (VOCs) in gas-solid phase photocatalytic systems suffer great challenges due to the low electron transfer efficiency and slow benzene ring-opening kinetics. Hence, a heterojunction photocatalyst of Bi2SiO5/TiO2 has been synthesized by a facile method. Bi2SiO5/TiO2 shows the ability of mineralizing toluene to CO2 with a degradation rate of 85.5%, while TiO2 is 49.0% and presents a continuous deactivation. Experimental characterizations and theoretical calculations indicate that a unique electron transfer channel of Bi/Si-O-Ti can be established in the heterojunction sample due to the coupling of the interface. The channel facilitates electron transfer to the catalyst surface, generating •OH radicals with strong oxidation and ring-opening ability. Moreover, in-situ DRIFTS reveal that the selective generation of benzoic acid on Bi2SiO5/TiO2 heterojunction plays a critical role in the ring-opening of toluene. This work discloses a novel paradigm to obtain the deep and durable photocatalytic mineralization of toluene.


Assuntos
Radical Hidroxila , Tolueno , Elétrons , Titânio
9.
Research (Wash D C) ; 2022: 9818792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36320637

RESUMO

Surface defects with abundant localized electrons on bismuth oxyhalide catalysts are proved to have the capability to capture and activate CO2. However, bismuth oxyhalide materials are susceptible to photocorrosion, making the surface defects easily deactivated and therefore losing their function as active sites. Construction of deactivation-resistant surface defects on catalyst is essential for stable CO2 photoreduction, but is a universal challenge. In this work, the Bi5O7I nanotubes with surface tensile strain are synthesized, which are favorable for the visible light-induced dynamic I defects generation. The CO2 molecules absorbed on I defects are constantly reduced by the incoming photogenerated electrons from I-deficient Bi5O7I nanotubes and the successive protonation of CO2 molecules is thus highly promoted, realizing the selective CO2 conversion process via the route of CO2-COOH--CO. The efficient and stable photoreduction of CO2 into CO with 100% selectivity can be achieved even under visible light (λ >420 nm) irradiation benefited from the dynamic I defects as active sites. The results presented herein demonstrate the unique action mechanism of light-induced dynamic defects during CO2 photoreduction process and provide a new strategy into rational design of deactivation-resistant catalysts for selective CO2 photoreduction.

10.
Angew Chem Int Ed Engl ; 61(43): e202209201, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-35983804

RESUMO

The nitrogen oxides (NOx) formed by photochemical reaction of surface nitrates raise significant concerns. However, little is known about the effect of visible light (>380 nm) on nitrate decomposition and the reaction mechanism. Herein, the decomposition of surface nitrates is investigated under visible light. The results indicate that visible light photocatalysis contributes significantly to nitrate decomposition. Monodentate nitrate (m-NO3 - ) can be decomposed into NOx by photogenerated electrons starting from the weakly coordinated N-O bond. Water vapor promotes NOx generation because more stable bidentate nitrate (b-NO3 - ) will be converted into m-NO3 - by surface hydroxyl groups through hydrogen bonding interactions. Alternatively, b-NO3 - can be directly decomposed to NO2 - by NO attack, but this process is subject to photocatalytic oxidation. This work brings a new focus on the atmospheric NOx sources and provides a more nuanced understanding of nitrates decomposition processes.

11.
Front Oncol ; 12: 908085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847906

RESUMO

Objectives: To evaluate the diagnostic efficiency and diagnostic threshold of conventional US and shear-wave elastography (SWE) in superficial enlarged lymph nodes (LNs). Methods: A total of 204 patients with superficial enlarged LNs were enrolled in this retrospective study aged 46.0 ± 15.2 years from March 2020 to March 2021. LNs with a long axis larger than 0.7 cm were considered as superficial enlarged. Before the histological biopsy, LNs that were considered suspicious according to both conventional US and SWE were included, while LNs with no or unclear pathological results, or with no satisfactory SWE images, were excluded. The conventional and 2-D SWE examinations were performed with Aplio i800 and Acuson sequoia equipped with i18LX5 linear-array transducer (5-18 MHz) and 10L4 linear-array transducer (4-10 MHz), respectively. Both E Median and Vs Median parameters were investigated by two senior ultrasound physicians. The pathological results were performed as the gold standard. Results: Variables including transverse axis size, lymphatic hilum, L/T ratio, echogenicity, and color Doppler pattern were considered significant. The mean E Median value in benign, metastatic LNs, and lymphoma were 28.26 ± 8.87 kPa, 77.46 ± 22.85 kPa, and 50.37 ± 5.41 kPa (p <0.001), while Vs Median values were 3.02 ± 0.50 m/s, 4.87 ± 0.90 m/s, and 4.09 ± 0.22 m/s, respectively (p < 0.001). The diagnostic performance indicated the high sensitivity, specificity, PPV, NPV, and overall accuracy of conventional US combined with SWE. The optimal cutoff values of E Median and Vs Median for predicting malignant LNs were 42.90 kPa and 3.73 m/s, respectively. As AUC value, sensitivity, specificity, accuracy, PPV, and NPV revealed, the indexes of E Median were 0.976, 0.927, 0.975, 0.946, 0.983, and 0.897, respectively, while Vs Median were 0.970, 0.927, 0.963, 0.941, 0.975, and 0.895, respectively (p <0.001). The ROC curves of both E Median (AUC=0.976) Vs Median (AUC=0.970) suggested the remarkable diagnostic efficiency in distinguishing benignity between suspected malignant LNs. Conclusions: Above results indicated that conventional US together with 2-D SWE could elevate the diagnostic performance. Meanwhile, the parameters of 2-D SWE including E Median and Vs Median could effectively assess malignant LNs, which provide valuable differentiating information in superficial enlarged LNs.

12.
J Hazard Mater ; 438: 129463, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780741

RESUMO

Constructing heterostructure is an effective way to fabricate advanced photocatalysts. However, the catalytic performance of typical common multi-dimensional bulk heterostructure still suffers from the limited active interface and inefficient carrier migration. Herein, we successfully synthesize the SnO2/Cs3Bi2I9 dual-quantum-dots nanoheterostructure (labeled as SCX, X = 1, 2, 3) for efficiently and stably photocatalytic NO removal under visible light irradiation. The NO removal rate of SC2 is almost 8 and 17 times higher than that of the single SnO2 and Cs3Bi2I9, respectively. Moreover, the SC2 photocatalyst shows only 3 % attenuation after five consecutive cycles, demonstrating good photocatalytic stability. Systematic experimental characterization and theoretical density functional theory calculations revealed that the high activity and stability of SCX originated from the efficient charge transfer at the confined interface between SnO2 and Cs3Bi2I9 quantum dots. This work provides a new perspective for constructing innovative dual-quantum-dots nanoheterostructure and assesses their potential in photocatalytic environmental applications.

13.
ACS Sens ; 7(6): 1757-1765, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35657691

RESUMO

This work achieved the chemical discrimination of benzene series (toluene, xylene isomers, and ethylbenzene gases) based on the Ti-doped Co3O4 sensor. Benzene series gases presented different gas-response features due to the differences in redox rate on the surface of the Ti-doped Co3O4 sensor, which created an opportunity to discriminate benzene series via the algorithm analysis. Excellent groupings were obtained via the principal component analysis. High prediction accuracies were acquired via k-nearest neighbors, linear discrimination analysis (LDA), and support vector machine classifiers. With the confusion matrix for the data set using the LDA classifier, the benzene series have been well classified with 100% accuracy. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory calculations were conducted to investigate the molecular gas-solid interfacial sensing mechanism. Ti-doped Co3O4 showed strong Lewis acid sites and adsorption capability toward reaction species, which benefited the toluene gas-sensing reaction and resulted in the highly boosted gas-sensing performance. Our research proposed a facile distinction methodology to recognize similar gases and provided new insights into the recognition of gas-solid interfacial sensing mechanisms.

14.
J Hazard Mater ; 437: 129329, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716569

RESUMO

Hydroxyl (⸱OH) and superoxide (⸱O2-) radicals are the main drivers for photocatalysis in toluene degradation, but their generation mechanisms are still ambiguous due to the lack of direct evidence. The spatially separated active sites for holes and electrons can help to clarify the dynamic process of radicals generation. By performing theoretical calculations, it is demonstrated that the spatially separated active sites for holes and electrons on the Bi2O2CO3 surface can be constructed by introducing oxygen vacancies in the [Bi2O2]2+ layer. H2O and O2 molecules can be better adsorbed and activated at hole and electron active sites, separately. Accordingly, the pristine and defective Bi2O2CO3 are prepared. The dynamic behavior of H2O and O2 molecules at the matching active sites is revealed, which indicates the efficient adsorption of reactants and the substantial production of radicals. Significantly, the specificity of the spatially separated holes and electrons active sites for ⸱OH and ⸱O2- radicals generation, respectively, is demonstrated by in situ EPR with the H2O vapor atmosphere. This work provides a design concept for unraveling reaction mechanisms to realize controllable radicals generation.

15.
J Hazard Mater ; 436: 129089, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35596985

RESUMO

Perovskite oxides possess significant prospects in environment application because of their compositional versatility and controllable band structure for redox reactions. Nevertheless, low charge separation and limited reactants activation restrict their performance for practical applications. In this work, we reveal that the electronic structure of BaSb2O6 can be modulated effectively by substituting B-site cations, leading to broadened light response range and promoted carrier separation. The Ga atoms substitute the Sb atoms to form GaO bonds and enable octahedral distortion, resulting in the electron transfer from Ga atom to O atoms and realizing lattice oxygen activation. The unique electronic localization in the BaSb2O6 surface facilitates the adsorption and activation of O2, H2O, toluene and reaction intermediates, thus enhancing ROS generation for toluene mineralization. Compared with the performance of pure BaSb2O6, the photocatalytic toluene degradation and mineralization of 5 wt% Ga-BaSb2O6 are increased by 4.5 times and 4.8 times without obvious deactivation. The reported facile and valid strategy for in situ controlling of B-site in perovskite and their unique effects on the electronic structure would benefit the development of high-performance perovskites for environmental applications.

16.
J Colloid Interface Sci ; 614: 405-414, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35108632

RESUMO

Developing electrocatalysts for efficient reduction of nitrate contaminant to value-added ammonia as energy carrier is a pivotal part for restoring the nitrogen cycle. However, the selectivity of ammonia is far from satisfaction, often suffering from accumulation of toxic nitrite byproduct. Herein, a series of CuNi alloy nanoparticles embedded in nitrogen-doped carbon matrix (CuNi/NC) with hierarchical pores were fabricated by pyrolysis of bimetallic metal-organic frameworks (MOFs). The catalysts exhibited excellent selectivity (94.4%) and faradaic efficiency (79.6%) for nitrate reduction to ammonia, greatly outperforming the performance of monometallic Cu/NC (selectivity of 60.8% and faradaic efficiency of 60.6%). Impressively, the introduction of nickel distinctly suppressed the production of toxic byproduct of nitrite. Online differential electrochemical mass spectrometry (DEMS) and in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) tests were utilized to reveal the key intermediates and the reaction pathway. Density functional theory (DFT) calculations demonstrated that the introducing of nickel into copper lattice modified both the electronic and geometric structures of the catalysts. The copper and nickel sites in the CuNi alloy catalysts operate synergistically to facilitate the hydrogenation of NO2* to HNO2* and suppress the hydrogen evolution reaction, boosting the selective formation of ammonia. This work could provide a new synthetic route for bimetallic catalysts and mechanistic understanding for nitrate to ammonia reaction.

17.
Chemosphere ; 289: 133081, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34843838

RESUMO

Engineering α-MnO2 with abundant oxygen vacancies is efficient to enhance its catalytic activity towards toluene oxidation. A simple and facile method was introduced to fabricate oxygen vacancies on α-MnO2 surface by reheating the pre-calcined samples under vacuum condition. The reheat treatment especially at 180 °C is beneficial for the formation of oxygen vacancies on α-MnO2 surface, enhancing the oxidation of toluene. The toluene conversion is up to 100% at 270 °C, which is 30 °C lower than that of α-MnO2 without reheat treatment. The apparent activation energy (16.8 kJ mol-1) of MnO2-180 catalyst is lowest among these catalysts, which is essential for accelerating the oxidation of toluene. In-situ DRIFTS results indicate that the MnO2-180 sample promotes the formation of benzaldehyde and the occurrence of ring-opening reaction, thus effectively improving the catalytic performance for toluene oxidation. A possible catalytic oxidation mechanism of toluene over α-MnO2 catalysts after reheat treatment was proposed.


Assuntos
Compostos de Manganês , Óxidos , Catálise , Oxigênio , Tolueno/análise , Vácuo
18.
ACS Appl Mater Interfaces ; 13(43): 50975-50987, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665608

RESUMO

Differentiated crystal structures generally affect the surface physicochemical properties of catalysts, causing variety in catalytic activity between polymorphs. However, the underlying mechanism has not been completely revealed, especially the influence of surface physicochemical properties on photocatalytic redox activity and the reaction mechanism. In this work, we reveal the mechanism of surface redox properties on different crystal forms of gallium oxide from a molecular level. α-Ga2O3 and ß-Ga2O3 exhibit a slight difference in catalytic oxidation of organic pollutants due to comprehensive influencing factors, including their valence band position, reactive oxygen species, and pore structure properties related to the adsorption-reaction-desorption process. But the catalytic reduction ability of CO2 is obviously different due to the large differences of interaction between the surface of crystal structures and CO2 molecules, which are critical to determine the catalytic performance and reaction pathways. The enhanced adsorption and activation of CO2 on the α-Ga2O3 surface could promote the reduction reaction efficiency. Moreover, the large energy barrier of CH2* formation on ß-Ga2O3 makes the formation of methane (CH4) relatively difficult compared to that on α-Ga2O3. The yield rate of CH4 (1.8 µmol·g-1·h-1) on α-Ga2O3 is three times better than that on ß-Ga2O3 (CH4: 0.6 µmol·g-1·h-1). The current findings can offer novel insights into the understanding of crystal-structure-dependent photocatalytic performances and the design of new catalysts applied in energy conversion and environmental purification by crystal structure-tuning.

19.
J Hazard Mater ; 416: 126208, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492969

RESUMO

Aromatic hydrocarbon is a representative type of VOCs, which causes adverse effects to human health. The degradation stability of aromatic hydrocarbon is of vital importance to commercializing a photocatalyst for its practical application. The most commonly used titanium dioxide photocatalyst (P25) was deactivated rapidly in the photocatalytic VOCs degradation process. In this work, the indium hydroxide (In(OH)3) photocatalyst was developed, which exhibited not only higher efficient activity but also ultra-stable stability for degradation of benzene, toluene and their mixtures. The origin of the activity difference between two catalysts was investigated by combined experimental and theoretical ways. Based on in situ DRIFTS and GC-MS, it was revealed that benzoic acid and carbonaceous byproducts were specifically formed and accumulated on P25, which were responsible for deactivation of photocatalyst. In contrast, as revealed by both DFT calculations and experimental results, the reaction pathway with byproducts blocking the active sites can be thermodynamically avoided on In(OH)3. This rendered high durability to In(OH)3 photocatalyst in degradations of aromatic pollutants. The elucidation of deactivation-resistant effect and reaction mechanism as an ideal photocatalyst for practical usage were provided.


Assuntos
Benzeno , Tolueno , Catálise , Humanos , Hidróxidos , Fotólise , Titânio
20.
Nanoscale ; 13(35): 14705-14712, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533166

RESUMO

Three-dimensional catalysts have attracted great attention in the field of the hydrogen evolution reaction (HER).However, great challenges remain in structural innovation and performance enhancement. Herein we designed and tailored a unique three-dimensional cross-linked neural network-like CoP-based composite, that is, carbon nanofibers inserted in CoP/NC polyhedra derived from in situ self-assembled bacterial cellulose (BC) wired ZIF-67 polyhedra via high-temperature carbonization and subsequent phosphorization. The obtained integrated catalyst (3-D CNF@CoP/NC) consists of CoP/NC polyhedra with abundant active sites as the "neurons" and carbon nanofibers as the "axons", and displayed remarkable activity with an overpotential of 64.5 mV and 105.6 mV at 10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH respectively and good stability with negligible current change after 80 h of chronoamperometric measurement or 4000 CV cycles. This work offers a high-performance HER catalyst and paves a new way for the rational engineering of unique 3-D interconnected hierarchical porous networks featuring ultrafast charge transfer and mass transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...