Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400480, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38803307

RESUMO

Enhancing the output performance of triboelectric nanogenerators (TENGs) is essential for increasing their application in smart devices. Oxygen-vacancy-rich BiO2-x nanosheets (BiO2-x NSs) are advanced-engineered nanomaterials with excellent piezoelectric properties. Herein, a stretchable unsymmetrical BiO2-x NSs deposited-hydrogel made of polyacrylamide (PAM) as a multimodal TENG is rationally fabricated, and the performance of TENG can be tailored by controlling the BiO2-x NSs deposition amount and spatial distribution. The alteration of resistance caused by the Poisson effect of PAM/BiO2-x composite hydrogel (H-BiO2-x) can be used as a piezoresistive sensor, and the piezoelectricity of BiO2-x NSs can effectively enhance the density of transfer charge, thus improving the output performance of the H-BiO2-x-based TENG. In addition, the chemical cross-linking between the BiO2-x NSs and the PAM polymer chain allows the hydrogel electrode to have a higher tensile capacity (867%). Used for biomechanical motion signal detection, the sensors made of H-BiO2-x have high sensitivity (gauge factor = 6.93) and can discriminate a range of forces (0.1-5.0 N) at low frequencies (0.5-2.0 Hz). Finally, the prepared TENG can collect biological energy and convert it into electricity. Consequently, the improved TENG shows a good application prospect as multimodal biomechanical sensors by combining piezoresistive, piezoelectric, and triboelectric effects.

2.
Nano Lett ; 24(17): 5351-5360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634773

RESUMO

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.


Assuntos
Hidrogéis , Hidrogéis/química , Humanos , Dispositivos Eletrônicos Vestíveis , Congelamento , Ligação de Hidrogênio , Eletricidade Estática , Condutividade Elétrica
3.
J Anim Sci Biotechnol ; 15(1): 49, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500230

RESUMO

BACKGROUND: Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization. The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies. However, research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited. This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets. METHODS: Sixty-four barrows (15.00 ± 1.12 kg) were randomly allotted to 4 groups and fed diets formulated with starch from corn, corn/barley, corn/sorghum, or corn/cassava combinations (diets were coded A, B, C, or D respectively). Protein retention, the concentrations of portal amino acid and glucose, and the relative expression of amino acid and glucose transporter mRNAs were investigated. In vitro digestion was used to compare the dietary glucose release profiles. RESULTS: Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources. The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics. Total nitrogen excretion was reduced in the piglets in group B, while apparent nitrogen digestibility and nitrogen retention increased (P < 0.05). Regardless of the time (2 h or 4 h after morning feeding), the portal total free amino acids content and contents of some individual amino acids (Thr, Glu, Gly, Ala, and Ile) of the piglets in group B were significantly higher than those in groups A, C, and D (P < 0.05). Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets, which decreased gradually with the extension of feeding time. The portal His/Phe, Pro/Glu, Leu/Val, Lys/Met, Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments. In the anterior jejunum, the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1, EAAC1, and CAT1. CONCLUSIONS: Rational allocation of starch resources could regulate dietary glucose release kinetics. In the present study, group B (corn/barley) diet exhibited a better glucose release kinetic pattern than the other groups, which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine, thereby promoting nitrogen deposition in the body, and improving the utilization efficiency of dietary nitrogen.

4.
Animals (Basel) ; 14(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338123

RESUMO

The aim of our present study was to investigate the effects of Gln supplementation on liver inflammatory responses as well as protein synthesis and degradation in the muscle of LPS-challenged broilers. A total of 120 one-day-old male broiler chickens (Arbor Acres Plus) were randomly arranged in a 2 × 2 factorial design with five replicates per treatment and six broilers per replicate, containing two main factors: immune challenge (injected with LPS in a dose of 0 or 500 µg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). After feeding with an alanine or Gln diet for 15 days, broilers were administrated an LPS or a saline injection at 16 and 21 days. The results showed that Gln supplementation alleviated the increased mRNA expressions of interleukin-6, interleukin-1ß, and tumor necrosis factor-α induced by LPS in liver. Moreover, the increased activity of aspartate aminotransferase combined with the decreased expression of glutaminase in muscle were observed following Gln addition. In addition, in comparison with the saline treatment, LPS challenge altered the signaling molecules' mRNA expressions associated with protein synthesis and degradation. However, Gln supplementation reversed the negative effects on protein synthesis and degradation in muscle of LPS-challenged broilers. Taken together, Gln supplementation had beneficial effects: alleviating inflammatory responses, promoting protein synthesis, and inhibiting protein degradation of LPS-challenged broilers.

5.
J Cancer ; 15(1): 103-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164280

RESUMO

Dimethoxytolyl propylresorcinol (UP302), a natural compound extracted from Dianella ensifolia, owing to its tyrosinase inhibitory and strong antioxidant properties, is used in whitening cosmetics. However, the role of UP302 has not been reported in cancer treatment. This study aimed to assess the in vitro antitumor activity of UP302 in different tumor cells. It inhibited the growth of certain cancer cell lines and especially in leukemia cells. Therefore, we investigated the antitumor effect of UP302 in leukemia by examining the cell cycle, apoptosis, reactive oxygen species levels (ROS) production, and changes in mitochondrial membrane potential. Our results demonstrated that UP302 inhibited the growth of leukemia cells both in vivo and in vitro and exerted a proapoptotic effect on MV411 and K562 cells, confirmed by flow cytometry and western blot analysis. Furthermore, UP302 promoted autophagy in MV411 and K562 cells. Transmission electron microscopy and western blot analysis showed that UP302 induced mitophagy in MV411 and K562 cells. In addition, the autophagy inhibitor chloroquine could enhance UP302-induced apoptosis, suggesting that UP302-mediated autophagy may be protective in MV411 and K562 cells. In conclusion, our study is the first to provide evidence for the anti-leukemia properties of UP302 and the potential clinical use of UP302 combined with autophagy inhibitors as a chemotherapeutic strategy for human leukemia.

6.
Int J Bioprint ; 9(3): 711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292170

RESUMO

299In Duchenne muscular dystrophy, dystrophic muscle phenotypes are closely associated with the exhaustion of muscle stem cells. Transplantation of muscle stem cells has been widely studied for improving muscle regeneration, but poor cell survival and self-renewal, rapid loss of stemness, and limited dispersion of grafted cells following transplantation have collectively hindered the overall success of this strategy. Optimized mechanisms for maintaining and improving stem cell function are naturally present in the microenvironment of the stem cell niche in healthy muscles. Therefore, one logical strategy toward improving stem cell function and efficiency of stem cell transplantation in diseased muscles would be the establishment of a microenvironment mimicking some key aspects of healthy native stem cell niches. Here, we applied inkjet-based bioprinting technology to engineer a mimicked artificial stem cell niche in dystrophic muscle, comprising stem cell niche regulating factors (Notch activator DLL1) bioprinted onto 3D DermaMatrix construct. The recombinant DLL1 protein, DLL1 (mouse): Fc (human) (rec), was applied here as the Notch activator. Bioprinted DermaMatrix construct was seeded with muscle stem cells in vitro, and increased stem cell maintenance and repressed myogenic differentiation process was observed. DLL1 bioprinted DermaMatrix construct was then engrafted into dystrophic muscle of mdx/scid mice, and the improved cell engraftment and progression of muscle regeneration was observed 10 days after engraftment. Our results demonstrated that bioprinting of Notch activator within 3D construct can be applied to serve as muscle stem cell niche and improve the efficacy of muscle stem cell transplantation in diseased muscle.

7.
Cell Death Discov ; 9(1): 167, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198162

RESUMO

Nuclear decoupling and softening are the main cellular mechanisms to resist mechanical stress-induced nuclear/DNA damage, however, its molecular mechanisms remain much unknown. Our recent study of Hutchinson-Gilford progeria syndrome (HGPS) disease revealed the role of nuclear membrane protein Sun2 in mediating nuclear damages and cellular senescence in progeria cells. However, the potential role of Sun2 in mechanical stress-induced nuclear damage and its correlation with nuclear decoupling and softening is still not clear. By applying cyclic mechanical stretch to mesenchymal stromal cells (MSCs) of WT and Zmpset24-/- mice (Z24-/-, a model for HGPS), we observed much increased nuclear damage in Z24-/- MSCs, which also featured elevated Sun2 expression, RhoA activation, F-actin polymerization and nuclear stiffness, indicating the compromised nuclear decoupling capacity. Suppression of Sun2 with siRNA effectively reduced nuclear/DNA damages caused by mechanical stretch, which was mediated by increased nuclear decoupling and softening, and consequently improved nuclear deformability. Our results reveal that Sun2 is greatly involved in mediating mechanical stress-induced nuclear damage by regulating nuclear mechanical properties, and Sun2 suppression can be a novel therapeutic target for treating progeria aging or aging-related diseases.

8.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37104726

RESUMO

The present study aimed to investigate the effect of glutamine (Gln) addition on the damage of porcine intestinal epithelial cells (IPEC-J2) induced by heat stress (HS). IPEC-J2 cultured in logarithmic growth period in vitro were firstly exposed to 42 °C for 0.5, 1, 2, 4, 6, 8, 10, 12, and 24 h for cell viability and cultured with 1, 2, 4, 6, 8, or 10 mmol Gln per L of culture media for heat shock protein 70 (HSP70) expression to determine the optimal disposal strategy (HS, 42 °C for 12 h and HSP70 expression, 6 mmol/L Gln treatment for 24 h). Then IPEC-J2 cells were divided into three groups: control group (Con, cultured at 37 °C), HS group (HS, cultured at 42 °C for 12 h), and glutamine group (Gln+HS, cultured at 42 °C for 12 h combined with 6 mmol/L Gln treatment for 24 h). The results showed that HS treatment for 12 h significantly decreased the cell viability of IPEC-J2 (P < 0.05) and 6 mmol/L Gln treatment for 12 h increased HSP70 expression (P < 0.05). HS treatment increased the permeability of IPEC-J2, evidenced by the increased fluorescent yellow flux rates (P < 0.05) and the decreased transepithelial electrical resistance (P < 0.05). Moreover, the downregulated protein expression of occludin, claudin-1, and zonula occludens-1 was observed in HS group (P < 0.05), but Gln addition alleviated the negative effects on permeability and the integrity of intestinal mucosal barrier induced by HS (P < 0.05). In addition, HS resulted in the elevations in HSP70 expression, cell apoptosis, cytoplasmic cytochrome c potential expression, and the protein expressions of apoptosis-related factors (apoptotic protease-activating factor-1, cysteinyl aspartate-specific proteinase-3, and cysteinyl aspartate-specific proteinase-9) (P < 0.05); however, the reductions in mitochondrial membrane potential expression and B-cell lymphoma-2 expression were induced by HS (P < 0.05). But Gln treatment attenuated HS-induced adverse effects mentioned above (P < 0.05). Taken together, Gln treatment exhibited protective effects in protecting IPEC-J2 from cell apoptosis and the damaged integrity of epithelial mucosal barrier induced by HS, which may be associated with the mitochondrial apoptosis pathway mediated by HSP70.


It has been demonstrated that heat stress (HS) induced damages of the intestinal epithelial cell membrane and tight junction, which ultimately compromises intestinal integrity and increases intestinal permeability and leads to the reduced growth performance and the increased morbidity and mortality. However, glutamine (Gln) contributes to rescuing the phenotype of intestinal barrier dysfunction through decreasing intestinal permeability, regulating the gut tight junction proteins under HS conditions, enhancing the viability, and attenuating cell apoptosis in porcine enterocytes suffered from stress treatment. In addition, it was reported that Gln administration increased the protein expression of intestinal heat shock protein 70 (HSP70), which may play a regulatory role in cellular apoptosis within IPEC-J2 cells. Therefore, we hypothesized that Gln might contribute to alleviating HS-induced damage of porcine intestinal epithelium via inhibiting the mitochondrial apoptosis pathway mediated by HSP70. The results showed that Gln addition alleviated the negative effects on permeability and the integrity of intestinal mucosal barrier induced by HS. In addition, Gln treatment reversed the elevations in HSP70 expression, cell apoptosis, cytoplasmic cytochrome c potential expression, and the protein expressions of apoptosis-related factors (apoptotic protease-activating factor-1, cysteinyl aspartate-specific proteinase-3, and cysteinyl aspartate-specific proteinase-9) induced by HS, and resulted in an increase in mitochondrial membrane potential expression and B-cell lymphoma-2 expression. Taken together, Gln treatment exhibited protective effects in protecting IPEC-J2 from cell apoptosis and the damaged integrity of epithelial mucosal barrier induced by HS, which could be associated with the mitochondrial apoptosis pathway mediated by HSP70.


Assuntos
Ácido Aspártico , Glutamina , Animais , Suínos , Glutamina/farmacologia , Glutamina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Resposta ao Choque Térmico , Apoptose
9.
Clin Cardiol ; 46(4): 441-448, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36798033

RESUMO

BACKGROUND: Left bundle branch pacemakers (LBBPs) can better maintain ventricular electrical synchronization than traditional right ventricular pacing (RVP). Temporary cardiac pacing (TCP) is needed to ensure the safety of the operation in patients undergoing LBBP. Currently, there are two methods of installing TCP in conventional permanent pacemaker implantation. HYPOTHESIS: To evaluate the safety and efficiency of replacing femoral vein pacing with atrial spiral pacing in the right ventricle for temporary cardiac pacing (TCP) during left bundle branch pacemaker (LBBP) implantation. METHOD: A total of 179 patients who underwent TCP during LBBP were selected for retrospective analysis from April 2019 to 2021 and divided into two groups: the atrial spiral electrode group (n = 76) and the femoral vein electrode group (n = 103). The following were observed: operation time; radiation dose; radiation time; operation expenses; hospitalization time; pacemaker parameters immediately after the operation and at 1 week, 1 month, 3 months, and 6 months after the operation; operation complications and femoral vein puncture point complications were observed in the two groups. RESULTS: Compared to the femoral vein electrode group, the atrial electrode group had significantly lower operation times ([116.86 ± 24.63] versus [128.94 ± 25.27] min, p < 0.05), radiation doses ([805.07 ± 132.94] versus [846.42 ± 87.37] mgy, p < 0.05), and decreased risk of a displaced or dislodged temporary pacing electrode during the operation ([0.00%] versus [4.85%], p < 0.05). The atrial electrode group did not have significant operation costs or material costs associated with femoral vein temporary pacing electrode implantation. In addition, the atrial electrode group did not have an increased risk of pacemaker-related infections, and the parameters of the pacemaker were unaffected. However, some puncture point complications appeared in the femoral vein electrode group (8 cases of local subcutaneous hematoma, 3 cases of pseudoaneurysms, 3 cases of arteriovenous fistula). CONCLUSION: The replacement of the femoral vein pacing electrode with an atrial spiral pacing electrode in the right ventricle for TCP during LBBP implantation was safe and effective.


Assuntos
Fibrilação Atrial , Marca-Passo Artificial , Humanos , Ventrículos do Coração , Estimulação Cardíaca Artificial/efeitos adversos , Estimulação Cardíaca Artificial/métodos , Estudos Retrospectivos , Veia Femoral , Marca-Passo Artificial/efeitos adversos , Eletrocardiografia/métodos , Resultado do Tratamento
10.
Cardiovasc Drugs Ther ; 37(3): 549-560, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35138505

RESUMO

PURPOSE: This study compared the effectiveness of sacubitril/valsartan (SV) vs. valsartan (V) for treating persistent atrial fibrillation (AF) after radio-frequency catheter ablation (RFCA). METHODS: Patients with persistent AF who received RFCA were randomly assigned to the SV or V treatment group with the intervention lasting for 12 months. The primary outcome included any atrial arrhythmia episode lasting ≥ 30 s after a 3-month blanking period. The secondary outcome included any atrial arrhythmia episode lasting ≥ 24 h or requiring cardioversion after a 3-month blanking period. The H2FPEF score was used to assess the possibility of patients suffering from heart failure with preserved ejection fraction. RESULTS: A total of 143 patients with persistent AF who received RFCA were randomized for the study, with 5 patients failing to follow-up. Among them, 29 (42%) out of 69 patients receiving V and 15 (21.7%) out of 69 patients receiving SV reached the primary endpoint (P < 0.001). A total of 26 (37.7%) out of 69 patients receiving V and 7 (10.1%) out of 69 patients receiving SV reached the secondary endpoint (P < 0.001). A decrease in the H2FPEF score after a 1-year follow-up seemed to be related to the recurrence of AF (OR, 0.065; 95% CI: 0.018-0.238, P < 0.001). CONCLUSIONS: SV can decrease AF recurrence after catheter ablation in patients with persistent AF at the 1-year follow-up. The mechanism for this process may be related to the reduction in the H2FPEF score in patients with preserved ejection fraction heart failure.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Insuficiência Cardíaca , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/cirurgia , Recidiva , Ablação por Cateter/efeitos adversos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Valsartana/efeitos adversos , Resultado do Tratamento
11.
Neuromodulation ; 26(1): 57-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35088742

RESUMO

OBJECTIVES: Spinal cord stimulation (SCS) is an established neuromodulation method that regulates the cardiac autonomic system. However, the biological mechanisms of the therapeutic effects of SCS after myocardial infarction (MI) remain unclear. MATERIALS AND METHODS: Twenty-five rabbits were divided into five groups: SCS-MI (voltage: 0.5 v; pulse width: 0.2 ms; 50 Hz; ten minutes on and 30 minutes off; two weeks; n = 5), MI (n = 5), sham SCS-MI (voltage: 0 v; two weeks; n = 5), sham MI (n = 5), and blank control (n = 5) groups. MI was induced by permanent left anterior descending artery ligation. SCS-MI and sham SCS-MI rabbits received the corresponding interventions 24 hours after MI. Autonomic remodeling was evaluated using enzyme-linked immunosorbent assay and immunohistochemistry. Inflammation and myocardial fibrosis were assessed using immunohistochemistry, quantitative polymerase chain reaction, hematoxylin and eosin staining, Masson staining, and Western blot. RESULTS: SCS improved the abnormal systemic autonomic activity. Cardiac norepinephrine decreased after MI (p < 0.01) and did not improve with SCS. Cardiac acetylcholine increased with SCS compared with the MI group (p < 0.05). However, no difference was observed between the MI and blank control groups. Growth-associated protein 43 (p < 0.001) and tyrosine hydroxylase (p < 0.001) increased whereas choline acetyltransferase (p < 0.05) decreased in the MI group compared with the blank control group. These changes were attenuated with SCS. SCS inhibited inflammation, decreased the ratio of phosphorylated-Erk to Erk (p < 0.001), and increased the ratio of phosphorylated-STAT3 to STAT3 (p < 0.001) compared with the MI group. Myocardial fibrosis was also attenuated by SCS. CONCLUSIONS: SCS improved abnormal autonomic activity after MI, leading to reduced inflammation, reactivation of STAT3, and inhibition of Erk. Additionally, SCS attenuated myocardial fibrosis. Our results warrant future studies of biological mechanisms of the therapeutic effects of SCS after MI.


Assuntos
Infarto do Miocárdio , Estimulação da Medula Espinal , Animais , Coelhos , Modelos Animais de Doenças , Fibrose , Inflamação/terapia , Infarto do Miocárdio/tratamento farmacológico , Estimulação da Medula Espinal/métodos
12.
Clin Immunol ; 245: 109176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368640

RESUMO

Atherosclerosis, characterized as the chronic inflammation of the arterial wall, is one of the leading causes of coronary artery disease (CAD), and macrophages are found to play essential roles in the initiation and progression of inflammation in atherosclerosis. N6-methyladenosine (m6A) modification, as the most abundant epi-transcriptomic modification in mRNA, is found to mediate the atherogenic inflammatory cascades in vascular endothelium. The detailed molecular mechanism of m6A methylation regulating inflammatory response during atherosclerosis is still not fully known. In this study, we find oxidized low-density lipoprotein (oxLDL) stimulation increases methyltransferases Mettl3 and Mettl14 expressions in macrophages, whereas the total m6A modification level in macrophages decreases under oxLDL stimulation. Matrin-3 (Matr3), an RNA binding protein, is identified to play a suppressive role on oxLDL-mediated macrophage inflammatory responses through inhibiting activation of pro-inflammatory signaling, mitogen-activated protein kinase (Mapk) by m6A-mediated mRNA decay via regulating the formation of Mettl3-Mettl14 complex. Moreover, we find that Matr3 expression decreases in the oxLDL-stimulated macrophages, and the peripheral blood-derived monocytes from patients with CAD, and overexpression of Matr3 significantly alleviates atherosclerosis development in vivo. Our study for the first time clarifies the role of Matr3 on macrophage inflammatory responses during atherosclerotic development, and supplies deep understanding on the relationship of m6A modification and inflammatory responses in atherosclerosis.


Assuntos
Aterosclerose , Metiltransferases , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA , Inflamação , Macrófagos/metabolismo , Aterosclerose/genética , Proteínas Associadas à Matriz Nuclear/metabolismo
13.
J Cachexia Sarcopenia Muscle ; 13(6): 3137-3148, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36218080

RESUMO

BACKGROUND: Fibro-adipogenic progenitors (FAPs) in the muscles have been found to interact closely with muscle progenitor/stem cells (MPCs) and facilitate muscle regeneration at normal conditions. However, it is not clear how FAPs may interact with MPCs in aged muscles. Senolytics have been demonstrated to selectively eliminate senescent cells and generate therapeutic benefits on ageing and multiple age-related disease models. METHODS: By studying the muscles and primary cells of age matched WT mice and Zmpste24-/- (Z24-/- ) mice, an accelerated ageing model for Hutchinson-Gilford progeria syndrome (HGPS), we examined the interaction between FAPs and MPCs in progeria-aged muscle, and the potential effect of senolytic drug fisetin in removing senescent FAPs and improving the function of MPCs. RESULTS: We observed that, compared with muscles of WT mice, muscles of Z24-/- mice contained a significantly increased number of FAPs (2.4-fold; n > =6, P < 0.05) and decreased number of MPCs (2.8-fold; n > =6, P < 0.05). FAPs isolated from Z24-/- muscle contained about 44% SA-ß-gal+ senescent cells, in contrast to about 3.5% senescent cells in FAPs isolated from WT muscle (n > =6, P < 0.001). The co-culture of Z24-/- FAPs with WT MPCs resulted in impaired proliferation and myogenesis potential of WT MPCs, with the number of BrdU positive proliferative cells being reduced for 3.3 times (n > =6, P < 0.001) and the number of myosin heavy chain (MHC)-positive myotubes being reduced for 4.5 times (n > =6, P < 0.001). The treatment of the in vitro co-culture system of Z24-/- FAPs and WT MPCs with the senolytic drug fisetin led to increased apoptosis of Z24-/- FAPs (14.5-fold; n > =6, P < 0.001) and rescued the impaired function of MPCs by increasing the number of MHC-positive myotubes for 3.1 times (n > =6, P < 0.001). Treatment of Z24-/- mice with fisetin in vivo was effective in reducing the number of senescent FAPs (2.2-fold, n > =6, P < 0.05) and restoring the number of muscle stem cells (2.6-fold, n > =6, P < 0.05), leading to improved muscle pathology in Z24-/- mice. CONCLUSIONS: These results indicate that the application of senolytics in the progeria-aged muscles can be an efficient strategy to remove senescent cells, including senescent FAPs, which results in improved function of muscle progenitor/stem cells. The senescent FAPs can be a potential novel target for therapeutic treatment of progeria ageing related muscle diseases.


Assuntos
Progéria , Células Satélites de Músculo Esquelético , Camundongos , Animais , Progéria/tratamento farmacológico , Senoterapia , Adipogenia , Fibras Musculares Esqueléticas
14.
Aging (Albany NY) ; 14(19): 7650-7661, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36084954

RESUMO

The aging of the immune system, or immunosenescence, was recently verified to have a causal role in driving the aging of solid organs, while the senolytic elimination of senescent immune cells was found to effectively delay systemic aging. Our recent study also showed that immune cells in severely dystrophic muscles develop senescence-like phenotypes, including the increased expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Here we further investigated whether the specific clearance of senescent immune cells in dystrophic muscle may effectively improve the function of muscle stem cells and the phenotypes of dystrophic muscle. We observed increased percentage of senescent cells in macrophages from mdx/utro(-/-) mice (a murine model for muscular dystrophy disease, dystrophin-/-; utrophin-/-), while the treatment of mdx/utro(-/-) macrophages with senolytic drug fisetin resulted in reduced number of senescent cells. We administrated fisetin to mdx/utro(-/-) mice for 4 weeks, and observed obviously reduced number of senescent immune cells, restored number of muscle cells, and improve muscle phenotypes. In conclusion, our results reveal that senescent immune cells, such as macrophages, are greatly involved in the development of muscle dystrophy by impacting the function of muscle stem cells, and the senolytic ablation of these senescent cells with fisetin can be an effective therapeutic strategy for improving function of muscle stem cells and phenotypes of dystrophic muscles.


Assuntos
Distrofina , Doenças Musculares , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Utrofina/genética , Camundongos Endogâmicos mdx , Senoterapia , Músculos/metabolismo , Macrófagos/metabolismo , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Senescência Celular
15.
Animals (Basel) ; 12(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35804628

RESUMO

The present study was conducted to investigate the effects of glutamine (Gln) supplementation on intestinal inflammatory reaction and mucosa barrier of broilers administrated with lipopolysaccharide (LPS) stimuli. A total of 120 1-d-old male broilers were randomly divided into four treatments in a 2 × 2 experimental arrangement, containing immune challenge (injected with LPS in a dose of 0 or 500 µg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). The results showed that growth performance of broilers intra-abdominally injected with LPS was impaired, and Gln administration alleviated the adverse effects on growth performance induced by LPS challenge. Furthermore, Gln supplementation reduced the increased concentration of circulating tumor necrosis factor-α, interleukin-6 and interleukin-1ß induced by LPS challenge. Meanwhile, D-lactic acid and diamine oxidase concentration in plasma were also decreased by Gln supplementation. In addition, the shorter villus height, deeper crypt depth and the lower ratio of villus height to crypt depth of duodenum, jejunum and ileum induced by LPS stimulation were reversed by Gln supplementation. Gln administration beneficially increased LPS-induced reduction in the expression of intestine tight junction proteins such as zonula occludens protein 1 (ZO-1), claudin-1 and occludin except for the ZO-1 in duodenum and occludin in ileum. Moreover, Gln supplementation downregulated the mRNA expression of toll-like receptor 4, focal adhesion kinase, myeloid differentiation factor 88 and IL-1R-associated kinase 4 in TLR4/FAK/MyD88 signaling pathway. Therefore, it can be concluded that Gln administration could attenuate LPS-induced inflammatory responses and improve intestinal barrier damage of LPS-challenged broilers.

16.
Sci Total Environ ; 838(Pt 1): 155964, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588846

RESUMO

Mangroves are highly dynamic ecosystems that offer important services such as maintaining biodiversity, filtering pollutants, and providing habitats for fishes. We investigated the uptake and accumulation of nutrients and potentially toxic elements in mangrove plants and fish to better understand the role of mangrove restoration in maintaining mangrove biota quality. In mangrove plants, the average bioconcentration factors of nutrients and potentially toxic elements were in the order P > Pb > Mn > Mg > Se > Zn > Hg > Cu > Cd > As > Co > Cr > Ni > Fe > V > Sb, where only P (all plant species) and Pb (Sonneratia apetala Buchanan-Hamilton) had a BCF > 1.0 in mangrove plants. In general, Sonneratia spp. had better performances than Kandelia candel (Linn.) Druce, Aegiceras corniculatum (Linn.) Blanco and Acanthus ilicifolius L. Sp. in terms of nutrient uptake and toxic metal(loid)s accumulation, and the best uptake capacity was found in S. apetala. Fast growth and easy adaptation make S. apetala suitable for a restored mangrove ecosystem, but continual management is needed to prevent its suppression of mangrove species diversity. The concentration of As, Cd, Hg, Cu, Cr and Pb in the mangrove sediment were 30-220% higher than the Chinese National Standard of Marine Sediment Quality Class I limits, suggesting that the sediments were unsuitable for aquaculture and nature reserves. Although a higher toxic metal(loid)s concentration in the sediment was found, the target hazard quotient (THQ) of this toxic metal(loid)s in 5 mangrove habitat fishes was <1.0, except THQ of Pb in Boleophthalmus pectinirostris Linnaeus was 1.17, and THQ of Cr in Bostrychus sinensis Lacépède was 1.12. The low THQ (less than 1.0) of mangrove habitat fishes suggested that the restored mangrove system could alleviate the bioaccumulation of toxic metal(loid)s in mangrove fish.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Animais , Cádmio , China , Ecossistema , Monitoramento Ambiental , Peixes , Sedimentos Geológicos , Chumbo , Mercúrio/análise , Metais Pesados/análise , Nutrientes , Plantas , Poluentes Químicos da Água/análise
17.
Cell Death Discov ; 8(1): 186, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397636

RESUMO

We previously reported that ibandronate (IBAN) could improve endothelial function in spontaneously hypertensive rats. However, the mechanism by which IBAN improves endothelial function is unclear. The IBAN-induced autophagic process in vitro experiments were determined by detection of LC3, Beclin1, and P62 protein levels via western blotting. The autophagy flux was detected by confocal microscopy and transmission electron microscopy. For in vivo experiments, spontaneously hypertensive rats were orally administered with IBAN. Utilizing angiotensin II (Ang II) to stimulate the human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs) as a model of endothelial cell injury in hypertension, we found that IBAN promoted autophagy and protected cell viability in Ang II-treated-endothelial cells while these effects could be reversed by autophagy inhibitor. In terms of mechanism, IBAN treatment decreased the levels of Rac1 and mammalian target of rapamycin (mTOR) pathway. Activating either Rac1 or mTOR could reverse IBAN-induced autophagy. Furthermore, the in vivo experiments also indicated that IBAN promotes autophagy by downregulating Rac1-mTOR. Taken together, our results firstly revealed that IBAN enhances autophagy via inhibiting Rac1-mTOR signaling pathway, and thus alleviates Ang II-induced injury in endothelial cells.

18.
World J Clin Cases ; 9(20): 5556-5561, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34307609

RESUMO

BACKGROUND: With an increased number of surgical procedures involving the mitral annular region, the risk of mitral valve prolapse (MVP) has also increased. Previous studies have reported that worsening of MVP occurred early after radiofrequency catheter ablation (RFCA) at papillary muscles in ventricular tachycardia (VT) patients with preoperative MVP. CASE SUMMARY: We report a case where MVP and papillary muscle rupture occurred 2 wk after RFCA in a papillary muscle originated VT patient without mitral valve regurgitation or prolapse before. The patient then underwent mitral valve replacement with no premature ventricular contraction or VT. During the surgery, a papillary muscle rupture was identified. Pathological examination showed necrosis of the papillary muscle. The patient recovered after mitral valve replacement. CONCLUSION: Too many ablation procedures and energy should be avoided.

19.
Trop Anim Health Prod ; 53(3): 381, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34195890

RESUMO

The study investigated the effects of dietary protein degradation rate on growth performance and immune response of crossbred Dorper × short-tail Han ram lambs experimentally infected with Haemonchus contortus and Trichostrongylus colubriformis. Eighteen lambs were randomly assigned to three dietary treatments, rapidly degradable protein (RDP), moderately degradable protein (MDP), and slowly degradable protein (SDP) diets. Feed intake and body weight of the lambs were recorded weekly until 42 days post-infection. The fecal egg count (FEC), FAMACHA scores, and immunoglobulins (IgG, IgM and IgA) were also monitored during the experimental period. A metabolic trial was conducted to assess apparent digestibility and volatile fatty acids were also determined. The lambs in SDP and MDP groups had higher feed, nutrient intake, weight gain, and feed efficiency than those in the RDP group. Feed conversion ratio (FCR) of the lambs in RDP group was higher than those in the SDP and MDP groups. A significant (P < 0.001) decrease in FEC was observed in the SDP and MDP groups. Dietary treatment had no significant effect on FAMACHA scores and concentration of serum antibodies. Concentration of acetic acid was higher (P < 0.013) in the lambs fed RDP than those fed the SDP and MDP diets. The lambs fed SDP diet had higher apparent digestibility than those fed the RDP diet. The poor performances in RDP group could be overcome by including SDP that ensures adequate post-ruminal protein supply reaching the small intestine.


Assuntos
Hemoncose , Haemonchus , Doenças dos Ovinos , Ração Animal/análise , Animais , Proteínas Alimentares , Fezes , Hemoncose/veterinária , Masculino , Contagem de Ovos de Parasitas/veterinária , Ovinos , Trichostrongylus
20.
J Anim Physiol Anim Nutr (Berl) ; 105(3): 493-506, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33682214

RESUMO

Starch is the largest constituent in animal diets. The aims of this study were as follows: (a) to assess the variability of basic physicochemical properties and in vitro starch digestion of starchy feedstuffs and investigate relationship between physicochemical properties and starch digestion of the feedstuffs, and (b) to explore the effects of different sources of starchy feedstuffs on starch digestion and glucose release. In this study, we determined the inherent molecular structure and granular structure of starch and chemical compositions of seven starchy feedstuffs, as well as starch digestion in single feedstuff and different feedstuffs combined with corn. Scanning electron microscope (SEM) results revealed significant difference between granule shape and size of starch of different feedstuffs. Fourier transforms infrared (FTIR) spectra for barley and wheat had lower (p < 0.05) absorbance band at areas A_860 and A_928 than other feedstuffs, yet rice starch had the lowest value for ratio (R) (1047/1022). Moreover, digestion rate ranged from 0.0157/min for resistant starch (sorghum) to 0.029/min for rapidly starch (broken rice). The principle component analysis (PCA) showed that predicted glycaemic index (pGI) was positively related to A_1022, glucose and rapidly (RDS) content and negatively related to A_995, A_1047, R (1047/1022), resistant starch (RS) and amylose content. Most of the feedstufss with corn combination had no effect on rate of starch digestion. In addition, different starchy feeds and corn combination changed the rate of starch digestion, when barley, however, sorghum combined with corn seemed to affect rate of starch digestion. To sum up, different sources differed in basic physicochemical and structural properties, which would influence the digestion rate of starch and the release of glucose. Combination of different feedstuffs particular sorghum with corn has interactive effect on starch digestion and the release of glucose.


Assuntos
Digestão , Amido , Amilose , Animais , Glucose , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...