Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 24(8): e14018, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39285627

RESUMO

For two decades, DNA barcoding and, more recently, DNA metabarcoding have been used for molecular species identification and estimating biodiversity. Despite their growing use, few studies have systematically evaluated these methods. This study aims to evaluate the efficacy of barcoding methods in identifying species and estimating biodiversity, by assessing their consistency with traditional morphological identification and evaluating how assignment consistency is influenced by taxonomic group, sequence similarity thresholds and geographic distance. We first analysed 951 insect specimens across three taxonomic groups: butterflies, bumblebees and parasitic wasps, using both morphological taxonomy and single-specimen COI DNA barcoding. An additional 25,047 butterfly specimens were identified by COI DNA metabarcoding. Finally, we performed a systematic review of 99 studies to assess average consistency between insect species identity assigned via morphology and COI barcoding and to examine the distribution of research effort. Species assignment consistency was influenced by taxonomic group, sequence similarity thresholds and geographic distance. An average assignment consistency of 49% was found across taxonomic groups, with parasitic wasps displaying lower consistency due to taxonomic impediment. The number of missing matches doubled with a 100% sequence similarity threshold and COI intraspecific variation increased with geographic distance. Metabarcoding results aligned well with morphological biodiversity estimates and a strong positive correlation between sequence reads and species abundance was found. The systematic review revealed an 89% average consistency and also indicated taxonomic and geographic biases in research effort. Together, our findings demonstrate that while problems persist, barcoding approaches offer robust alternatives to traditional taxonomy for biodiversity assessment.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Insetos , Animais , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Insetos/classificação , Insetos/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Vespas/genética , Vespas/classificação , Vespas/anatomia & histologia
2.
Commun Biol ; 6(1): 601, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270651

RESUMO

Climate change is an important driver of range shifts and community composition changes. Still, little is known about how the responses are influenced by the combination of land use, species interactions and species traits. We integrate climate and distributional data for 131 butterfly species in Sweden and Finland and show that cumulative species richness has increased with increasing temperature over the past 120 years. Average provincial species richness increased by 64% (range 15-229%), from 46 to 70. The rate and direction of range expansions have not matched the temperature changes, in part because colonisations have been modified by other climatic variables, land use and vary according to species characteristics representing ecological generalisation and species interactions. Results emphasise the role of a broad ecological filtering, whereby a mismatch between environmental conditions and species preferences limit the ability to disperse and establish populations in emerging climates and novel areas, with potentially widespread implications for ecosystem functioning.


Assuntos
Borboletas , Ecossistema , Animais , Borboletas/fisiologia , Europa (Continente) , Suécia , Finlândia
3.
Mol Ecol ; 31(4): 1093-1110, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34874594

RESUMO

Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6°N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.


Assuntos
Esocidae , Variação Genética , Adaptação Fisiológica , Animais , Biodiversidade , Evolução Biológica , Esocidae/genética , Variação Genética/genética , Genética Populacional
4.
BMC Genom Data ; 22(1): 22, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182923

RESUMO

BACKGROUND: Fitness consequences of intraspecific genetic admixture can vary from positive to negative depending on the genetic composition of the populations and environmental conditions. Because admixture has potential to influence the success of management and conservation efforts, genetic similarity has been suggested to be used as a proxy to predict the outcome. Studies utilizing microsatellites (a neutral marker) to investigate associations between genetic distance and admixture effects show conflicting results. Marker types that yield information on genome-wide and/or adaptive variation might be more useful for predicting responses to inter-population hybridization. In this study we utilized published data for three populations of pike (Esox lucius) to investigate associations between offspring performance (hatching success) and parental genetic similarity in experimentally purebred and admixed families, based on neutral (microsatellites), genome-wide neutral (RADseq SNPs), and adaptive (SNPs under selection) markers. RESULTS: Estimated similarity varied among the markers, likely reflecting differences in their inherent properties, but was consistently higher in purebred than admixed families. A significant interaction between marker type and admixture treatment reflected that neutral SNPs yielded higher estimates than adaptive SNPs for admixed families whereas no difference was found for purebred families, which indicates that neutral similarity was not reflective of adaptive similarity. When all samples were pooled, no association between similarity and performance was found for any marker. For microsatellites, similarity was positively correlated with hatching success in purebred families, whereas no association was found in admixed families; however, the direction of the effect differed between the population combinations. CONCLUSIONS: The results strengthen the notion that, as of today, there is no proxy that can reliably predicted the outcome of admixture. This emphasizes the need of further studies to advance knowledge that can shed light on how to safeguard against negative consequences of admixture, and thereby inform management and promote conservation of biological diversity.


Assuntos
Genoma , Repetições de Microssatélites , Marcadores Genéticos , Humanos , Hibridização Genética , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único
5.
Front Genet ; 11: 218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231687

RESUMO

Population genetic studies reveal biodiversity patterns and inform about drivers of evolutionary differentiation and adaptation, including gene flow, drift and selection. This can advance our understanding and aid decision making regarding management and conservation efforts. Microsatellites have long been used in population genetic studies. Thanks to the development of newer techniques, sequencing approaches such as restriction site associated DNA sequencing (RADseq) are on their way to replace microsatellites for some applications. However, the performance of these two marker types in population genetics have rarely been systematically compared. We utilized three neutrally and adaptively differentiated populations of anadromous pike (Esox lucius) to assess the relative performance of microsatellites and RADseq with respect to resolution and conclusiveness of estimates of population differentiation and genetic structure. To this end, the same set of individuals (N = 64) were genotyped with both RADseq and microsatellite markers. To assess effects of sample size, the same subset of 10 randomly chosen individuals from each population (N = 30 in total) were also genotyped with both methods. Comparisons of estimated genetic diversity and structure showed that both markers were able to uncover genetic structuring. The full RADseq dataset provided the clearest detection of the finer scaled genetic structuring, and the other three datasets (full and subset microsatellite, and subset RADseq) provided comparable results. A search for outlier loci performed on the full SNP dataset pointed to signs of selection potentially associated with salinity and temperature, exemplifying the utility of RADseq to inform about the importance of different environmental factors. To evaluate whether performance differences between the markers are general or context specific, the results of previous studies that have investigated population structure using both marker types were synthesized. The synthesis revealed that RADseq performed as well as, or better than microsatellites in detecting genetic structuring in the included studies. The differences in the ability to detect population structure, both in the present and the previous studies, are likely explained by the higher number of loci typically utilized in RADseq compared to microsatellite analysis, as increasing the number of markers will (regardless of the marker type) increase power and allow for clearer detection and higher resolution of genetic structure.

6.
BMC Evol Biol ; 19(1): 148, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331267

RESUMO

BACKGROUND: In the wake of climate change many environments will be exposed to increased and more variable temperatures. Knowledge about how species and populations respond to altered temperature regimes is therefore important to improve projections of how ecosystems will be affected by global warming, and to aid management. We conducted a common garden, split-brood temperature gradient (4.5 °C, 9.7 °C and 12.3 °C) experiment to study the effects of temperature in two populations (10 families from each population) of anadromous pike (Esox lucius) that normally experience different temperatures during spawning. Four offspring performance measures (hatching success, day degrees until hatching, fry survival, and fry body length) were compared between populations and among families. RESULTS: Temperature affected all performance measures in a population-specific manner. Low temperature had a positive effect on the Harfjärden population and a negative effect on the Lervik population. Further, the effects of temperature differed among families within populations. CONCLUSIONS: The population-specific responses to temperature indicate genetic differentiation in developmental plasticity between populations, and may reflect an adaptation to low temperature during early fry development in Harfjärden, where the stream leading up to the wetland dries out relatively early in the spring, forcing individuals to spawn early. The family-specific responses to temperature treatment indicate presence of genetic variation for developmental plasticity (G x E) within both populations. Protecting between- and within-population genetic variation for developmental plasticity and high temperature-related adaptive potential of early life history traits will be key to long-term viability and persistence in the face of continued climate change.


Assuntos
Adaptação Fisiológica , Esocidae/fisiologia , Temperatura , Animais , Temperatura Baixa , Esocidae/anatomia & histologia , Feminino , Geografia , Masculino , Reprodução , Suécia , Água
7.
Ecol Evol ; 8(21): 10448-10459, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30464817

RESUMO

Intraspecific genetic admixture occurs when previously separated populations within a species start interbreeding, and it can have either positive, negative, or neutral effects on reproductive performance. As there currently is no reliable predictor for the outcome of admixture, an increased knowledge about admixture effects in different species and populations is important to increase the understanding about what determines the response to admixture. We tested for effects of admixture on F1 offspring quality in three subpopulations of pike (Esox lucius). Gametes were collected in the field, and eggs from each female were experimentally fertilized with milt from a male from each population (one "pure" and two "admixed" treatments). Three offspring quality measures (hatching success, fry survival, and fry length) were determined and compared between (a) pure and admixed population combinations and (b) the sex-specific treatments within each admixed population combination (based on the origin of the male and female, respectively). The results suggested that although there were no overall effects of admixture on offspring quality, the consequences for a given population combination could be sex-specific and thus differ depending on which of the parents originated from one or the other population. All offspring quality traits were influenced by both maternal ID and paternal ID. Sex- and individual-specific effects can have implications for dispersal behavior and gene flow between natural populations, and are important to consider in conservation efforts.

8.
Sci Rep ; 8(1): 6813, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700365

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Sci Rep ; 8(1): 22, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311634

RESUMO

Environmental heterogeneity is a key determinant of genetic and phenotypic diversity. Stable and homogenous environments tends to result in evolution of specialism and local adaptations, while temporally unpredictable environments may maintain a diversity of specialists, promote generalist strategies, or favour diversified bet hedging strategies. We compared salinity tolerance between two anadromous subpopulations of pike (Esox Lucius) that utilize freshwater spawning sites with different salinity regimes. Eggs from each population were artificially fertilized and incubated in a salinity gradient (0, 3, 5, 7, and 9 psu) using a split-brood design. Effects on embryonic development, hatching success, survival of larvae, and fry body length were compared between populations and families. The population naturally spawning in the stable freshwater habitat showed signs of specialization for freshwater spawning. The population exposed to fluctuating selective pressure in a spawning area with occasional brackish water intrusions tolerated higher salinities and displayed considerable variation in reaction norms. Genetic differences and plasticity of salinity tolerance may enable populations to cope with changes in salinity regimes associated with future climate change. That geographically adjacent subpopulations can constitute separate units with different genetic characteristics must be considered in management and conservation efforts to avoid potentially negative effects of genetic admixture on population fitness and persistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...