Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 109(12): 2068-2081, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310350

RESUMO

PREMISE: Approximately 14% of all fern species have physiologically active chlorophyllous spores that are much more short-lived than the more common and dormant achlorophyllous spores. Most chlorophyllous-spored species (70%) are epiphytes and account for almost 37% of all epiphytic ferns. Chlorophyllous-spored ferns are also overrepresented among fern species in habitats with waterlogged soils, of which nearly 60% have chlorophyllous spores. Ferns in these disparate habitat types also have a low incidence of mycorrhizal associations. We therefore hypothesized that autotrophic chlorophyllous spores represent an adaptation of ferns to habitats with scarce mycorrhizal associations. METHODS: We evaluated the coevolution of chlorophyllous spores and mycorrhizal associations in ferns and their relation to habitat type using phylogenetic comparative methods. RESULTS: Although we did not find support for the coevolution of spore type and mycorrhizal associations, we did find that chlorophyllous spores and the absence of mycorrhizal associations have coevolved with epiphytic and waterlogged habitats. Transition rates to epiphytic and waterlogged habitats were significantly higher in species with chlorophyllous spores compared to achlorophyllous lineages. CONCLUSIONS: Spore type and mycorrhizal associations appear to play important roles in the radiation of ferns into different habitat types. Future work should focus on clarifying the functional significance of these associations.


Assuntos
Gleiquênias , Micorrizas , Micorrizas/fisiologia , Gleiquênias/fisiologia , Filogenia , Esporos Fúngicos , Evolução Biológica , Esporos/fisiologia
2.
Bot Rev ; 87(2): 151-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34219751

RESUMO

To mark the commencement of his retirement as Nathaniel Lord Britton Curator of Botany, and appointment as Curator Emeritus at the New York Botanical Garden, we pay tribute to Robbin Moran and impact on the botanical community with a brief synopsis of his career. Naturalist, fern expert, adored teacher-it is difficult to adequately pay tribute to his accomplishments, and his impact on botany in a single article. Robbin has published four books, 13 monographs of neotropical fern clades, over 170 scientific papers, and dozens of popular articles. He has named 115 new species, five new genera, and one family of ferns. He is eponymized by seven new species and the genus Moranopteris. We recount his earliest days and academic trajectory to become a leading researcher and educator in pteridology. We highlight his major influences, scientific accomplishments, and outreach to the botanical community.

3.
Syst Biol ; 70(6): 1232-1255, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33760075

RESUMO

Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-evidence dating (or "tip-dating") approaches that allow for the incorporation of fossils as tips in the analysis, with their phylogenetic and temporal relationships to the extant taxa inferred from the data and 2) the fossilized birth-death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fossilization) and thus provide a coherent and biologically interpretable tree prior. To explore the behavior of these methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to declining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-intuitive informativeness of the uniform tree prior, and the inherent nonidentifiability of divergence-time models. In contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition model or the morphological clock model. We compare the performance of a large pool of candidate models using a combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific speciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown divergences for the Marattiales in the mid-Devonian and Late Cretaceous, respectively, with elevated speciation rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of ${\sim}$2800 species at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approximately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades is made a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and lineage diversification. [Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth-death; lineage diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes.].


Assuntos
Gleiquênias , Teorema de Bayes , Evolução Biológica , Gleiquênias/genética , Fósseis , Especiação Genética , Filogenia
4.
Mol Phylogenet Evol ; 150: 106881, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512193

RESUMO

Dennstaedtiaceae has 270 species, a worldwide distribution, and an edge-colonizing habit that is unusual among ferns. Aneuploidy, polyploidy, and hybrids are common in the family. Combining morphology, anatomy, chromosome number, and geographical distributions with our newly generated molecular phylogeny, we provide new insights into the evolution of the family. We paid special attention to Hypolepis. Our molecular dataset of five cpDNA markers is the most comprehensive to date, comprising 72 species (and a total of 98 taxa), of which 33 are Hypolepis (45 taxa). We also generated divergence-time estimates through BEAST with four fossil calibrations. We recovered three sub-families in Dennstaedtiaceae: Monachosoroideae (monogeneric), Dennstaedtioideae, and Hypolepidoideae. Monachosoroideae has a chromosome base number of x = 28; Hypolepidoideae of x = 26; while in Dennstaedtioideae this is still obscure, with different numbers ranging from 30 to 47. Dennstaedtioideae genera require re-circumscriptions because Dennstaedtia is polyphyletic. In Hypolepidoideae, the six genera are monophyletic. Within Hypolepis, seven geographically distinct clades were recovered; but we found no strong morphological characters to define them. Within the family, the long-creeping rhizome evolved with a change in habit: from shade-tolerant to edge-colonizers, to thicket-formers. Short or extremely large leaves are derived conditions. Sorus shape and position, glandular hairs, and prickles are homoplastic. Hybridization/allotetraploidy in Hypolepis can be suggested by the combined data. In our phylogenetic hypothesis, Dennstaedtiaceae originated around 135 Ma, with the split of Monachosoroideae around 94 Ma, and the split between Dennstaedtioideae/Hypolepidoideae around 78 Ma. All extant genera are inferred to be relatively young. Hypolepis started to diversify around 10 Ma, and it probably originated in east Asia and/or Oceania. Hypolepis reached the Neotropics twice: through elements of the Hypolepis rugosula clade (which originated at 7 Ma), and through the ancestor of the Neotropical clade, which originated at 3.1 Ma and was prickly.


Assuntos
Dennstaedtiaceae/classificação , Cromossomos de Plantas/genética , Dennstaedtiaceae/genética , Evolução Molecular , Fósseis , Hibridização Genética , Filogenia , Folhas de Planta/genética , Poliploidia
5.
Front Plant Sci ; 11: 615723, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505416

RESUMO

Functional traits determine how species interact with their abiotic and biotic environment. In turn, functional diversity describes how assemblages of species as a whole are adapted to their environment, which also determines how they might react to changing conditions. To fully understand functional diversity, it is fundamental to (a) disentangle the influences of environmental filtering and species richness from each other, (b) assess if the trait space saturates at high levels of species richness, and (c) understand how changes in species numbers affect the relative importance of the trait niche expansion and packing. In the present study, we determined functional diversity of fern assemblages by describing morphological traits related to resource acquisition along four tropical elevational transects with different environmental conditions and species richness. We used several functional diversity indices and their standardized effect size to consider different aspects of functional diversity. We contrasted these aspects of functional diversity with climate data and species richness using linear models and linear mixed models. Our results show that functional morphological trait diversity was primarily driven by species richness and only marginally by environmental conditions. Moreover, increasing species richness contributed progressively to packing of the morphological niche space, while at the same time decreasing morphological expansion until a saturation point was reached. Overall, our findings suggest that the density of co-occurring species is the fundamental driving force of morphological niche structure, and environmental conditions have only an indirect influence on fern resource acquisition strategies.

6.
Mycologia ; 111(6): 1041-1055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31647754

RESUMO

Acrospermum is a poorly known genus of epibiotic and saprophytic species with a subcosmopolitan distribution. Here, we investigate the intriguing relationship between Acrospermum and its host plants in the fern family Polypodiaceae, where it occurs upon approximately 45 neotropical species. We conducted phylogenetic analyses using an eight-marker comprehensive ascomycete data set comprising 719 species representing all major lineages along with 23 new Acrospermum specimens sampled from ferns. We ask whether fern-dwelling Acrospermum are monophyletic, whether epibiotic Acrospermum have evolved independently from saprophytic ancestors, and identify anamorphic phases by incorporating sequences for all suspected taxa. Our results corroborate the placement of Acrospermales within the Dothideomycetes with strong support. However, the order remains incertae sedis due to weak support along the branches subtending the clade that includes the Acrospermales plus Dyfrolomycetales. Our results show a strong phylogenetic pattern in lifestyles but do not clearly identify an ancestral life history state. The first divergence in Acrospermaceae splits fungicolous taxa from taxa that inhabit plants; saprophytes and anamorphic phases found on angiosperms occur in both clades. Fungicolous species are monophyletic, whereas species with an epibiotic or necrotic life history upon plants are nonmonophyletic due to the position of the saprophyte A. longisporium. Previously, all Acrospermum collected from ferns were identified as A. maxonii. Our results indicate that this is not monophyletic due to the inclusion of Gonatophragmium triuniae. Two species are described herein as A. gorditum, sp. nov., and A. leucocephalum, sp. nov. We find no instances of co-cladogenesis; however, our ability to detect this is limited by the lack of resolution in the A. maxonii clade. Rather, we see that that the distribution of epibiotic Acrospermum is explained by the overlap between the ecological niche of the Acrospermum species and its host.


Assuntos
Ascomicetos/classificação , Gleiquênias/microbiologia , Filogenia , Ascomicetos/isolamento & purificação , Primers do DNA/genética , Evolução Molecular , Análise de Sequência de DNA
7.
Appl Plant Sci ; 6(5): e01148, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30131890

RESUMO

PREMISE OF THE STUDY: Until recently, most phylogenetic studies of ferns were based on chloroplast genes. Evolutionary inferences based on these data can be incomplete because the characters are from a single linkage group and are uniparentally inherited. These limitations are particularly acute in studies of hybridization, which is prevalent in ferns; fern hybrids are common and ferns are able to hybridize across highly diverged lineages, up to 60 million years since divergence in one documented case. However, it not yet clear what effect such hybridization has on fern evolution, in part due to a paucity of available biparentally inherited (nuclear-encoded) markers. METHODS: We designed oligonucleotide baits to capture 25 targeted, low-copy nuclear markers from a sample of 24 species spanning extant fern diversity. RESULTS: Most loci were successfully sequenced from most accessions. Although the baits were designed from exon (transcript) data, we successfully captured intron sequences that should be useful for more focused phylogenetic studies. We present phylogenetic analyses of the new target sequence capture data and integrate these into a previous transcript-based data set. DISCUSSION: We make our bait sequences available to the community as a resource for further studies of fern phylogeny.

8.
Am J Bot ; 105(3): 525-535, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29637539

RESUMO

PREMISE OF THE STUDY: Understanding the relationship between phenotypic evolution and lineage diversification is a central goal of evolutionary biology. To extend our understanding of the role morphological evolution plays in the diversification of plants, we examined the relationship between leaf size evolution and lineage diversification across ferns. METHODS: We tested for an association between body size evolution and lineage diversification using a comparative phylogenetic approach that combined a time-calibrated phylogeny and leaf size data set for 2654 fern species. Rates of leaf size change and lineage diversification were estimated using BAMM, and rate correlations were performed for rates obtained for all families and individual species. Rates and patterns of rate-rate correlation were also analyzed separately for terrestrial and epiphytic taxa. KEY RESULTS: We find no significant correlation between rates of leaf area change and lineage diversification, nor was there a difference in this pattern when growth habit is considered. Our results are consistent with the findings of an earlier study that reported decoupled rates of body size evolution and diversification in the Polypodiaceae, but conflict with a recent study that reported a positive correlation between body size evolution and lineage diversification rates in the tree fern family Cyatheaceae. CONCLUSIONS: Our findings indicate that lineage diversification in ferns is largely decoupled from shifts in body size, in contrast to several other groups of organisms. Speciation in ferns appears to be primarily driven by hybridization and isolation along elevational gradients, rather than adaptive radiations featuring prominent morphological restructuring. The exceptional diversity of leaf morphologies in ferns appears to reflect a combination of ecophysiological constraints and adaptations that are not key innovations.


Assuntos
Evolução Biológica , Gleiquênias/genética , Especiação Genética , Fenótipo , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Adaptação Fisiológica , Tamanho Corporal , Ecologia , Gleiquênias/anatomia & histologia , Gleiquênias/crescimento & desenvolvimento , Hibridização Genética , Folhas de Planta/anatomia & histologia , Polypodiaceae , Isolamento Reprodutivo , Especificidade da Espécie
9.
Mol Phylogenet Evol ; 111: 1-17, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28279810

RESUMO

Based on a worldwide phylogenetic framework filling the taxonomic gap of Madagascar and surrounding islands of the Western Indian Ocean (WIO), we revisited the systematics of grammitid fern species (Polypodiaceae). We also investigated the biogeographic origin of the extant diversity in Madagascar and estimated the relative influence of vicariance, long-distance dispersals (LDD) and in situ diversification. Phylogenetic inferences were based on five plastid DNA regions (atpB, rbcL, rps4-trnS, trnG-trnR, trnL-trnF) and the most comprehensive taxonomic sampling ever assembled (224 species belonging to 31 out of 33 recognized grammitids genera). 31 species from Madagascar were included representing 87% of the described diversity and 77% of the endemics. Our results confirmed a Paleotropical clade nested within an amphi-Atlantic grade. In addition, we identified three new major clades involving species currently belonging to Grammitis s.l., Ctenopterella and Enterosora. We resolved for the first time Grammitis s.s. as monophyletic, and Ctenopterella (newly tested here) and Enterosora as polyphyletic. The Neotropical genus Moranopteris was shown to also occur in Madagascar through a newly discovered species. Most importantly, we suggest a >30% inflation of the species number in the WIO due to the hidden diversity in >10 cryptic lineages, best explained by high morphological homoplasy. Molecular dating and ancestral areas reconstruction allowed identifying the Neotropics as the predominant source of LDD to the African-WIO region, with at least 12 colonization events within the last 20Ma. Repeated eastward migrations may be explained by transoceanic westerly winds transporting the dust-like spores. Tropical Asia s.l. would also have played a (minor) role through one dispersal event to Madagascar at the end of the Oligocene. Last, within the complex Malagasy region made of a mosaic of continental and oceanic islands located close to the African continent, we showed that contrary to theoretical expectations and empirical evidence in angiosperms, Africa does not act as a dispersal source and Madagascar seems to have a more important influence on the regional dynamics: we observed both in situ species diversification and dispersal out of Madagascar. This influence also extends beyond the region, since one dispersal event probably originated from Madagascar and reached the Subantarctic island of Amsterdam.


Assuntos
Gleiquênias/classificação , Filogenia , Filogeografia , Dispersão de Sementes/fisiologia , Ásia , DNA de Cloroplastos/genética , Ecossistema , Evolução Molecular , Gleiquênias/genética , Variação Genética , Oceano Índico , Madagáscar , Fatores de Tempo
10.
Evolution ; 69(9): 2482-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26257202

RESUMO

The emergence of angiosperm-dominated tropical forests in the Cretaceous led to major shifts in the composition of biodiversity on Earth. Among these was the rise to prominence of epiphytic plant lineages, which today comprise an estimated one-quarter of tropical vascular plant diversity. Among the most successful epiphytic groups is the Polypodiaceae, which comprises an estimated 1500 species and displays a remarkable breadth of morphological and ecological diversity. Using a time-calibrated phylogeny for 417 species, we characterized macroevolutionary patterns in the family, identified shifts in diversification rate, and identified traits that are potential drivers of diversification. We find high diversification rates throughout the family, evidence for a radiation in a large clade of Paleotropical species, and support for increased rates of diversification associated with traits including chlorophyllous spores and noncordiform gametophytes. Contrary to previous hypotheses, our results indicate epiphytic species and groups with humus-collecting leaves diversify at lower rates than the family as a whole. We find that diversification rates in the Polypodiaceae are positively correlated with changes in elevation. Repeated successful exploration of novel habitat types, rather than morphological innovation, appears to be the primary driver of diversification in this group.


Assuntos
Polypodiaceae/anatomia & histologia , Polypodiaceae/classificação , Biodiversidade , Evolução Biológica , Ecossistema , Florestas , Células Germinativas Vegetais , Filogenia , Folhas de Planta/anatomia & histologia , Polypodiaceae/genética , Esporos
11.
Trends Plant Sci ; 20(7): 402-3, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25986968

RESUMO

A recent study has documented a natural hybridization event between two fern lineages that last shared a common ancestor about 60 million years ago. This is one of the deepest hybridization events ever described and has important implications for plant speciation theory.


Assuntos
Gleiquênias/classificação , Especificidade da Espécie , Hibridização Genética
12.
Mol Phylogenet Evol ; 81: 195-206, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25173566

RESUMO

We examined the global historical biogeography of grammitid ferns (Polypodiaceae) within a phylogenetic context. We inferred phylogenetic relationships of 190 species representing 31 of the 33 currently recognized genera of grammitid ferns by analyzing DNA sequence variation of five plastid DNA regions. We estimated the ages of cladogenetic events on an inferred phylogeny using secondary fossil calibration points. Historical biogeographical patterns were inferred via ancestral area reconstruction. Our results supported four large-scale phylogenetic and biogeographic patterns: (1) a monophyletic grammitid clade that arose among Neotropical polypod ancestors about 31.4 Ma; (2) a paraphyletic assemblage of clades distributed in the Neotropics and the Afro-Malagasy region; (3) a large clade distributed throughout the Asia-Malesia-Pacific region that originated about 23.4 Ma; and, (4) an Australian or New Zealand origin of the circumaustral genus Notogrammitis. Most genera were supported as monophyletic except for Grammitis, Oreogrammitis, Radiogrammitis, and Zygophlebia. Grammitid ferns are a well-supported monophyletic group with two biogeographically distinct lineages: a primarily Neotropical grade exhibiting several independent successful colonizations to the Afro-Malagasy region and a primarily Paleotropical clade exhibiting multiple independent dispersals to remote Pacific islands and temperate, austral regions.


Assuntos
Especiação Genética , Filogenia , Polypodiaceae/classificação , Ásia , Austrália , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , Fósseis , Funções Verossimilhança , Análise de Sequência de DNA
13.
Ann Bot ; 113(1): 35-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24197753

RESUMO

BACKGROUND AND AIMS: Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional 'athyrioid' ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. METHODS: Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. KEY RESULTS: The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. CONCLUSIONS: The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae - a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.


Assuntos
Evolução Biológica , Gleiquênias/anatomia & histologia , Filogenia , Teorema de Bayes , Funções Verossimilhança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...