Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Oncogene ; 33(15): 1934-44, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23624916

RESUMO

Given the failure of chemo- and biotherapies to fight advanced pancreatic cancer, one major challenge is to identify critical events that initiate invasion. One priming step in epithelia carcinogenesis is the disruption of epithelial cell anchorage to the basement membrane which can be provided by hemidesmosomes (HDs). However, the existence of HDs in pancreatic ductal epithelium and their role in carcinogenesis remain unexplored. HDs have been explored in normal and cancer pancreatic cells, and patient samples. Unique cancer cell models where HD assembly can be pharmacologically manipulated by somatostatin/sst2 signaling have been then used to investigate the role and molecular mechanisms of dynamic HD during pancreatic carcinogenesis. We surprisingly report the presence of mature type-1 HDs comprising the integrin α6ß4 and bullous pemphigoid antigen BP180 in the human pancreatic ductal epithelium. Importantly, HDs are shown to disassemble during pancreatic carcinogenesis. HD breakdown requires phosphoinositide 3-kinase (PI3K)-dependent induction of the matrix-metalloprotease MMP-9, which cleaves BP180. Consequently, integrin α6ß4 delocalizes to the cell-leading edges where it paradoxically promotes cell migration and invasion through S100A4 activation. As S100A4 in turn stimulates MMP-9 expression, a vicious cycle maintains BP180 cleavage. Inactivation of this PI3K-MMP-9-S100A4 signaling loop conversely blocks BP180 cleavage, induces HD reassembly and inhibits cell invasion. We conclude that mature type-1 HDs are critical anchoring structures for the pancreatic ductal epithelium whose disruption, upon PI3K activation during carcinogenesis, provokes pancreatic cancer cell migration and invasion.


Assuntos
Carcinoma Ductal Pancreático/patologia , Hemidesmossomos/patologia , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Autoantígenos/metabolismo , Western Blotting , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Epitélio/metabolismo , Epitélio/patologia , Imunofluorescência , Hemidesmossomos/metabolismo , Humanos , Imuno-Histoquímica , Microscopia Confocal , Colágenos não Fibrilares/metabolismo , Neoplasias Pancreáticas/patologia , Interferência de RNA , Receptores de Somatostatina/metabolismo , Colágeno Tipo XVII
3.
Br J Cancer ; 101(4): 637-44, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19672266

RESUMO

BACKGROUND: Activator protein-2alpha (AP-2alpha) is a transcription factor that belongs to the family of AP-2 proteins that have essential roles in tumorigenesis. Indeed, AP-2alpha is considered as a tumour-suppressor gene in different tissues such as colonic, prostatic or breast epithelial cells. Moreover, AP-2alpha also participates in the control of colon and breast cancer cells sensitivity towards chemotherapeutic drugs. Despite its potential interest, very few data are available regarding the roles of AP-2alpha in pancreatic cancer. METHODS: We have developed a stable pancreatic CAPAN-1 cell line overexpressing AP-2alpha. Consequences of overexpression were studied in terms of in vivo cell growth, gene expression, migration capacity and chemosensitivity. RESULTS: In vivo tumour growth of CAPAN-1 cells overexpressing AP-2alpha was significantly decreased by comparison to control cells. An altered expression pattern of cell cycle-controlling factors (CDK-4, CDK-6, cyclin-G1, p27(kip1) and p57(kip2)) was observed in AP-2alpha-overexpressing clones by microarrays and western blot analysis. Promoter activity and ChIP analysis indicated that AP-2alpha induces p27(kip1) protein levels by direct binding to and transactivation of its promoter. Moreover, AP-2alpha overexpression increased the chemosensitivity of CAPAN-1 cells to low doses of gemcitabine and reduced their in vitro migration capacity. CONCLUSION: Our data suggested that AP-2alpha overexpression could be exploited to decrease in vivo tumour growth of pancreatic cancer cells and to increase their sensitivity to gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Fator de Transcrição AP-2/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição AP-2/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
4.
Cell Mol Life Sci ; 65(19): 3110-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18810319

RESUMO

The suppressor of translation initiation 4E-BP1 functions as a key regulator in cellular growth, differentiation, apoptosis and survival. While the control of 4E-BP1 activity via phosphorylation has been widely studied, the molecular mechanisms and the signaling pathways that govern 4E-BP1 gene expression are largely unknown. Here we show that inactivation of phosphatidylinositol 3-kinase (PI3K) consequent to stable expression of the antiproliferative somatostatin receptor 2 (sst2) in pancreatic cancer cells leads to transcriptional accumulation of the hypophosphorylated forms of 4E-BP1 protein. In cancer cells, while 4E-BP1 gene promoter is maintained repressed in a PI3K-dependent mechanism, sst2-dependent inactivation of the PI3K/Akt pathway releases 4E-BP1 gene transcription. Furthermore, the use of a pharmacological inhibitor and dominant-negative or -positive mutants of PI3K all affect 4E-BP1 protein expression and promoter activity in different cell lines. These data show that, in addition to inactivation of 4E-BP1 via hyperphosphorylation, signaling through the PI3K pathway silences 4E-BP1 gene transcription.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inativação Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Proteínas de Ciclo Celular , Linhagem Celular , Ativação Enzimática , Genes Reporter , Humanos , Dados de Sequência Molecular , Ornitina Descarboxilase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfoproteínas/genética , Biossíntese de Proteínas , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia
5.
Cell Death Differ ; 14(2): 197-208, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16645635

RESUMO

Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.


Assuntos
Apoptose , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptores de Somatostatina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Somatostatina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Camundongos , Modelos Biológicos , Mimetismo Molecular/efeitos dos fármacos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1 , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
6.
Ann Oncol ; 17(12): 1733-42, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16801334

RESUMO

BACKGROUND: There is a need for novel antitumor agents that demonstrate efficacy in currently refractory tumors without adding to the toxicity of therapy. The somatostatin analogs, which have demonstrated antineoplastic activities in experimental tumor models, and good tolerability and safety profiles are attractive candidates. MATERIALS AND METHODS: Data from preclinical studies provide evidence for direct and indirect mechanisms by which somatostatin analogs exert antitumor effects. RESULTS: Direct antitumor activities, mediated through somatostatin receptors (sst(1)-sst(5)) expressed in tumor cells, include blockade of autocrine/paracrine growth-promoting hormone and growth factor production, inhibition of growth factor-mediated mitogenic signals and induction of apoptosis. Indirect antitumor effects include inhibition of growth-promoting hormone and growth factor secretion, and antiangiogenic actions. Many human tumors express more than one somatostatin receptor subtype, with sst(2) being predominant. Somatostatin analogs such as octreotide and lanreotide, which present a high affinity for sst(2), are in current clinical use to alleviate symptoms in patients with endocrine tumors, and radiolabeled somatostatin analogs have been developed for diagnosis and radiotherapy. CONCLUSIONS: While the rationale exists for the use of somatostatin analogs as antitumor agents, studies are ongoing to identify analogs with activity across the range of receptor subtypes to maximize the potential of such treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Somatostatina/análogos & derivados , Humanos , Somatostatina/uso terapêutico
7.
Radiat Prot Dosimetry ; 119(1-4): 164-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16581927

RESUMO

A systematic study of photothermally stimulated defects creation processes is carried out by the thermally stimulated luminescence (TSL) method for a large number of undoped and doped PbWO4 crystals under irradiation at 80-180 K in the 3.4-4.3 eV energy range. The activation energy Ea for the regular exciton state disintegration is found to be approximately 0.1 eV. For defect-related states disintegration, Ea varies in the crystals studied from 0.03 to 0.36 eV. The origin of the defect-related states is discussed. The conclusion is made that not only a release of charge carriers but also charge transfer processes take place under UV irradiation of PbWO4 crystals.


Assuntos
Cristalização/métodos , Dosimetria Termoluminescente/métodos , Compostos de Tungstênio/química , Compostos de Tungstênio/efeitos da radiação , Raios Ultravioleta , Relação Dose-Resposta à Radiação , Teste de Materiais , Doses de Radiação , Compostos de Tungstênio/análise
8.
J Endocrinol Invest ; 28(11 Suppl International): 5-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16625838

RESUMO

Since its discovery three decades ago as an inhibitor of GH release from the pituitary gland, somatostatin has attracted much attention because of its functional role in the regulation of a wide variety of physiological functions in the brain, pituitary, pancreas, gastrointestinal tract, adrenals, thyroid, kidney and immune system. Its actions include inhibition of endocrine and exocrine secretions, modulation of neurotransmission, motor and cognitive functions, inhibition of intestinal motility, absorption of nutrients and ions and vascular contractility. In addition, the peptide controls the proliferation of normal and tumor cells. Its action is mediated by a family of G protein-coupled receptors [somatostatin receptor (SSTR)1-SSTR5] that are widely distributed in normal and cancer cells. Direct antitumor activities, mediated through SSTR expressed in tumor cells, include blockade of autocrine/paracrine growth-promoting hormone and growth factor production, inhibition of growth factor-mediated mitogenic signals and induction of apoptosis. Indirect antitumor effects include inhibition of growth-promoting hormone and growth factor secretion, and antiangiogenic actions. Many human tumors express more than one SSTR subtype, with SSTR2 being predominant. These receptors represent the molecular basis for the clinical use of somatostatin analogs in the treatment of endocrine tumors and their in vivo localization. This review covers the present knowledge in SSTR biology and signaling.


Assuntos
Receptores de Somatostatina/fisiologia , Somatostatina/fisiologia , Antineoplásicos , Divisão Celular , Cognição , Humanos , Atividade Motora , Neoplasias/patologia , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Transmissão Sináptica
9.
Dig Liver Dis ; 36 Suppl 1: S2-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15077905

RESUMO

Somatostatin is an inhibitory neuropeptide, which acts on various targets throughout the body to regulate a variety of physiological functions including inhibition of endocrine and exocrine secretions, modulation of neurotransmission, motor and cognitive functions, inhibition of intestinal motility, absorption of nutrients and ions, vascular contractility and inhibition of normal and tumour cell proliferation. It exerts its effects through interaction with five somatostatin receptors (sst1-sst5), which belong to the family of G-protein-coupled receptors with seven transmembrane spanning domains and are variably expressed in a variety of tumours such as gastroenteropancreatic tumours, pituitary tumours, and carcinoid tumours. This review covers the present knowledge regarding the molecular mechanisms involved in somatostatin antineoplastic activity. Evidence that sst2 receptor acts as a tumour suppressor is also discussed.


Assuntos
Divisão Celular/fisiologia , Receptores de Somatostatina/fisiologia , Somatostatina/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 2): 066616, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12188860

RESUMO

The problem of evaluating dissipative effects in macroscopic quantum tunneling is re-examined for the case of Josephson junctions, with the adoption of an alternative way with respect to several previously proposed and, in some cases, contradictory approaches. The system, which consists of a junction coupled to a transmission line, is analyzed both analytically and numerically. A test of the theoretical model, as compared to the experimental results available, is performed in accordance with a criterion based on a shortening of the traversal time.

11.
Ann Endocrinol (Paris) ; 63(2 Pt 3): 2S13-8, 2002 Apr.
Artigo em Francês | MEDLINE | ID: mdl-12037498

RESUMO

Somatostatin and its stable analogues (octreotide, lanreotide and vapreotide) exert an antiproliferative effect on various normal and cancerous cells both in vitro and in vivo. This effect results from different mechanisms: an indirect effect by the inhibition of release of growth factors and trophic hormones (GH, IGF-1, insulin, gastrin, EGF), an inhibition of angiogenesis processes (endothelial cell proliferation, VEGF release, monocyte activity), an immunomodulatory effect (lymphocyte proliferation, interleukine or cytokine release, NK activity) and a direct effect on target cells. This direct antiproliferative effect is mediated through specific somatostatin receptors. Among them, sst(1), sst(2), sst(4) and sst(5) have been implicated in vitro in the G1-G0 cell cycle blockade, sst(3) and sst(2) mediating the apoptotic effect of somatostatin. In addition, sst(2) acts as an antioncogene in human pancreatic cancer cells. Coupling to membrane tyrosine phosphatases (SHP-1, SHP-2) is the main transduction pathway involved in the antiproliferative effect mediated by sst receptors. The dissociation observed clinically between a frequent antisecretory response and an inconstant antitumor effect after administration of somatostatin analogues may reflect an absence of expression or coupling of the receptor(s) involved in antiproliferative effect. Moreover, a desensitization or mutation of these receptors may also occur in tumors. All the potential mechanism involved should be elucidated in order to improve or better target the antitumor effect of somatostatin analogues clinically used.


Assuntos
Antagonistas de Hormônios/farmacologia , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Humanos , Receptores de Somatostatina/efeitos dos fármacos
12.
Biol Reprod ; 65(6): 1732-42, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11717135

RESUMO

Immature porcine Sertoli cells have been reported to be targets for the regulatory peptide somatostatin (SRIF), which inhibits the basal and FSH-induced proliferation of Sertoli cells through a decrease of cAMP production. In the present study, we show that SRIF inhibits both basal and FSH-stimulated expression of the stem cell factor (SCF), a Sertoli cell-specific gene. The SRIF-mediated inhibition of forskolin-triggered, but not of 8-bromoadenosine-cAMP-triggered, SCF mRNA expression demonstrates the involvement of adenylyl cyclase in underlying peptide actions. Moreover, these effects require functional coupling of specific plasma membrane receptors to adenylyl cyclase via inhibitory G proteins, because pertussis toxin prevents SRIF-mediated inhibition of SCF mRNA expression. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assays suggest the involvement of sst2 receptors in SRIF actions on Sertoli cells. The biological relevance of these data is supported by an SRIF-mediated decrease in SCF-induced incorporation of [(3)H]thymidine in isolated seminiferous tubules. In situ hybridization and confocal microscopy show that, in seminiferous tubules only, spermatogonia display both c-kit and sst2 receptors. Taken together, these results suggest that SCF-stimulated DNA synthesis can be inhibited by SRIF in spermatogonia, but not in Sertoli and peritubular cells. Combined RT-PCR and immunohistochemical approaches point toward spermatogonia and Leydig cells as the source of testicular SRIF. These data argue in favor of paracrine/autocrine SRIF actions in testis.


Assuntos
DNA/biossíntese , Expressão Gênica/efeitos dos fármacos , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Somatostatina/farmacologia , Fator de Células-Tronco/genética , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Toxina Adenilato Ciclase , Adenilil Ciclases/metabolismo , Animais , Western Blotting , Colforsina/farmacologia , Hormônio Foliculoestimulante/farmacologia , Proteínas de Ligação ao GTP/fisiologia , Hibridização In Situ , Masculino , Microscopia Confocal , Toxina Pertussis , Proteínas Proto-Oncogênicas c-kit/análise , RNA Mensageiro/análise , Receptores de Somatostatina/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogônias/química , Fator de Células-Tronco/farmacologia , Suínos , Fatores de Virulência de Bordetella/farmacologia
13.
FASEB J ; 15(12): 2300-2, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11511520

RESUMO

Somatostatin receptor sst2 is an inhibitory G protein-coupled receptor, which inhibits normal and tumor cell growth by a mechanism involving the tyrosine phosphatase SHP-1. We reported previously that SHP-1 associates transiently with and is activated by sst2 and is a critical component for sst2 growth inhibitory signaling. Here, we demonstrate that in Chinese hamster ovary cells expressing sst2, SHP-1 is associated at the basal level with the neuronal nitric oxide synthase (nNOS). Following sst2 activation by the somatostatin analog RC-160, SHP-1 rapidly recruits nNOS tyrosine dephosphorylates and activates it. The resulting NO activates guanylate cyclase and inhibits cell proliferation. Coexpression of a catalytically inactive SHP-1 mutant with sst2 blocks RC-160-induced nNOS dephosphorylation and activation, as well as guanylate cyclase activation. In mouse pancreatic acini, RC-160 treatment reduces nNOS tyrosine phosphorylation accompanied by an increase of its activity. By opposition, in acini from viable motheaten (mev/mev) mice, which express a markedly inactive SHP-1, RC-160 has no effect on nNOS activity. Finally, expression of a dominant-negative form of nNOS prevents both RC-160-induced p27 up-regulation and cell proliferation inhibition. We therefore identified nNOS as a novel SHP-1 substrate critical for sst2-induced cell-growth arrest.


Assuntos
Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Somatostatina/fisiologia , Transdução de Sinais , Animais , Células CHO , Divisão Celular , Cricetinae , GMP Cíclico/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Modelos Biológicos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/fisiologia , Somatostatina/farmacologia
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(2 Pt 2): 025102, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11308528

RESUMO

A model for tunneling based on stochastic processes proves to be capable of interpreting the results of two experiments at the microwave scale. The first of these consisted of measuring the penetration time in a subcutoff waveguide; the second one, in measuring the shift of a beam in a frustrated total reflection. Said shift which is a measurement of the traversal time of the barrier. In both cases, a peak in the real-time component was evidenced, as predicted by the theoretical model.

15.
J Biol Chem ; 276(16): 13461-8, 2001 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-11278805

RESUMO

The sst2 somatostatin receptor is an inhibitory G protein-coupled receptor, which exhibits anti-tumor properties. Expression of sst2 is lost in most human pancreatic cancers. We have cloned 2090 base pairs corresponding to the genomic DNA region upstream of the mouse sst2 (msst2) translation initiation codon (ATG). Deletion reporter analyses in mouse pituitary AtT-20 and human pancreatic cancer PANC-1, BxPC-3, and Capan-1 cells identify a region from nucleotide -260 to the ATG codon (325 base pairs) showing maximal activity, and a region between nucleotides -2025 and -260 likely to comprise silencer or transcriptional suppressor elements. In PANC-1 and AtT-20 cells, transforming growth factor (TGF)-beta up-regulates msst2 transcription. Transactivation is mediated by Smad4 and Smad3. The cis-acting region responsible for such regulation is comprised between nucleotides -1115 and -972 and includes Sp1 and CAGA-box sequences. Expression of Smad4 in Smad4-deficient Capan-1 and BxPC-3 cells restores TGF-beta-dependent and -independent msst2 transactivation. Expression of Smad4 in BxPC-3 cells reestablishes both endogenous sst2 expression and somatostatin-mediated inhibition of cell growth. These findings demonstrate that msst2 is a new target gene for TGF-beta transcription regulation and underlie the possibility that loss of Smad4 contributes to the lack of sst2 expression in human pancreatic cancer, which in turn may contribute to a stimulation of tumor growth.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas , Receptores de Somatostatina/genética , Transativadores/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/farmacologia , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Clonagem Molecular , Códon , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Biblioteca Genômica , Humanos , Luciferases/genética , Camundongos , Dados de Sequência Molecular , Neoplasias Pancreáticas , Neoplasias Hipofisárias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Proteína Smad4 , Transcrição Gênica , Ativação Transcricional/efeitos dos fármacos , Células Tumorais Cultivadas
16.
Chemotherapy ; 47 Suppl 2: 30-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11275700

RESUMO

Over the past decade, antiproliferative effects of somatostatin and analogs have been reported in many somatostatin receptor-positive normal and tumor cell types. Regarding the molecular mechanisms involved, somatostatin or analogs mediate their action through both indirect and direct effects. Somatostatin acts through five somatostatin receptors (SSTR1-5) which are variably expressed in normal and tumor cells. These receptors regulate a variety of signal transduction pathways including inhibition of adenylate cyclase, regulation of ion channels, regulation of serine/threonine and tyrosine kinases and phosphatases. This review focuses on recent advances in biological mechanisms involved in the antineoplastic activity of somatostatin and analogs.


Assuntos
Antineoplásicos Hormonais/farmacologia , Divisão Celular/efeitos dos fármacos , Somatostatina/farmacologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores de Somatostatina/metabolismo , Transdução de Sinais , Somatostatina/análogos & derivados
17.
Gastroenterology ; 120(1): 200-9, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11208729

RESUMO

BACKGROUND & AIMS: The somatostatin receptor SST2 mediates the antiproliferative effect of stable somatostatin analogues. SST2 gene expression is lost in most human pancreatic carcinomas. We investigated the mechanisms that could be involved in this defect. METHODS: SST2 gene structure was investigated by sequencing and restriction fragment length polymorphism. Characterization of the polymorphism was performed by electrophoretic mobility shift, cross-linking, and transcription assays. RESULTS: No major deletion of the SST2 coding sequence was found in pancreatic carcinoma specimens, but 2 point mutations were frequently detected in the promoter sequence at positions -83 (A-->G) and -57 (C-->G) from the major transcription initiation site. These mutations were present in pancreatic cancer but also in normal pancreatic tissues or leukocytes and thus correspond to a genetic polymorphism. In the 2 human pancreatic cancer cell lines MiaPaCa-2 and AsPC-1, the naturally occurring mutation -57G had no effect on transcription of SST2 gene, whereas -83G mutation reduced it by 60%-70%. We showed that the -83G mutation creates a specific binding site for the nuclear factor I. Cotransfection experiments showed that the nuclear factor I-A1.1 isoform was responsible for SST2 promoter repression. CONCLUSIONS: The -83G polymorphism identified on human SST2 gene promoter is responsible for the specific fixation of nuclear factor I and repression of SST2 transcription in human pancreatic cancer cells. However, its contribution to pancreatic tumorigenesis remains unknown.


Assuntos
Proteínas de Ligação a DNA , Neoplasias Pancreáticas , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Receptores de Somatostatina/genética , Fatores de Transcrição , Transcrição Gênica/fisiologia , Regiões 5' não Traduzidas/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Mutação/genética , Fatores de Transcrição NFI , Proteínas Nucleares , Pâncreas/fisiologia , RNA Mensageiro/genética , Células Tumorais Cultivadas , Proteína 1 de Ligação a Y-Box
18.
J Physiol Paris ; 94(3-4): 205-10, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11087998

RESUMO

Somatostatin acts as an inhibitory peptide of various secretory and proliferative responses. Its effects are mediated by a family of G-protein-coupled receptors (sst1-5) that can couple to diverse signal transduction pathways such as inhibition of adenylate cyclase and guanylate cyclase, modulation of ionic conductance channels, and protein dephosphorylation. The five receptors bind the natural peptide with high affinity but only sst2, sst5 and sst3 bind the short synthetic analogues. Somatostatin negatively regulates the growth of various normal and tumour cells. This effect is mediated indirectly through inhibition of secretion of growth-promoting factors, angiogenesis and modulation of the immune system. Somatostatin can also act directly through sst receptors present on target cells. The five receptors are expressed in various normal and tumour cells, the expression of each receptor being receptor subtype and cell type specific. According to the receptor subtypes, distinct signal transduction pathways are involved in the antiproliferative action of somatostatin. Sst1, 4 and 5 modulate the MAP kinase pathway and induce G1 cell cycle arrest. Sst3 and sst2 promote apoptosis by p53-dependent and -independent mechanisms, respectively.


Assuntos
Sistemas Neurossecretores/fisiologia , Receptores de Somatostatina/fisiologia , Transdução de Sinais/fisiologia , Animais , Divisão Celular/fisiologia , Humanos , Sistemas Neurossecretores/citologia
19.
Digestion ; 62 Suppl 1: 27-32, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10940684

RESUMO

Somatostatin is a neuropeptide produced by neuroendocrine, inflammatory and immune cells in response to different stimuli. Somatostatin inhibits various cellular functions including secretions, motility and proliferation. Its action is mediated by five specific somatostatin receptors (sst1-sst5) which belong to the G protein-coupled receptor family. The five receptors bind the natural peptide with high affinity but only sst2, sst5 and sst3 bind the short synthetic analogues used to treat patients with neuroendocrine tumors. The five receptors are expressed in various normal and tumor cells, the expression of each receptor being receptor subtype and cell-type specific. In neuroendocrine tumors, sst2 is highly expressed whereas in advanced pancreatic adenocarcinoma as well as high-grade colorectal carcinomas, its expression is lost. Each receptor subtype is coupled to different signal transduction pathways through G protein-dependent and -independent mechanisms. The synthesis of selective agonists for each receptor and the recent development of genetic animal models with selective deletion of receptor subtype provide tools for establishing some of the biological roles of the receptors. sst1, 2 and 5 mediate inhibition of GH secretion whereas sst2 and sst5 mediate inhibition of glucagon secretion and insulin secretion, respectively.


Assuntos
Receptores de Somatostatina/fisiologia , Somatostatina/fisiologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Transdução de Sinais , Somatostatina/análogos & derivados , Regulação para Cima
20.
Proc Natl Acad Sci U S A ; 97(16): 9180-5, 2000 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10900262

RESUMO

The sst2 somatostatin receptor mediates the antiproliferative effects of somatostatin analogs. The present study demonstrates that stable expression of sst2 in the hamster pancreatic cancer cells PC-1 and PC-1.0 activates an autocrine negative loop leading to an in vitro inhibition of cell proliferation. In vivo studies conducted in Syrian golden hamsters after orthotopic implantation of PC-1.0 cells showed that both tumor growth and metastatic progression of allografts containing 100% of sst2-expressing cells were significantly inhibited for up to 20 days after implantation, as compared with control allografts that did not express sst2. A local antitumor bystander effect was observed after induction of mixed tumors containing a 1:3 ratio of sst2-expressing cells to control cells. Tumor volume and incidence of metastases of mixed tumors were significantly reduced at day 13 post implantation. This effect decreased with time as at day 20, growth of mixed tumors was similar to that of control tumors. After administration of the cytotoxic somatostatin conjugate AN-238 on day 13, antitumor bystander effect observed in mixed tumors was significantly extended to day 20. We also observed that in vitro invasiveness of sst2-expressing PC-1.0 cells was significantly reduced. Tyrosine dephosphorylation of E-cadherin may participate in restoring the E-cadherin function, reducing in turn pancreatic cancer cell motility and invasiveness. This dephosphorylation depends on the tyrosine phosphatase src homology 2-containing tyrosine phosphatase 1 (SHP-1) positively coupled to sst2 receptor. The inhibitory effect of sst2 gene expression on pancreatic cancer growth and invasion combined with chemotherapy with targeted cytotoxic somatostatin analog administration provides a rationale for a therapeutic approach to gene therapy based on in vivo sst2 gene transfer.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Citotoxinas/administração & dosagem , Proteínas Fúngicas/fisiologia , Proteínas Ativadoras de GTPase , Neoplasias Pancreáticas/patologia , Proteínas de Saccharomyces cerevisiae , Animais , Caderinas/metabolismo , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/fisiologia , Cricetinae , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Proteínas Fúngicas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mesocricetus , Metástase Neoplásica/prevenção & controle , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilação , Proteína Fosfatase 1 , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/metabolismo , Pirróis/administração & dosagem , Células Tumorais Cultivadas , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...