RESUMO
Anthelmintic resistance in equine parasite Parascaris univalens, compromises ivermectin (IVM) effectiveness and necessitates an in-depth understanding of its resistance mechanisms. Most research, primarily focused on holistic gene expression analyses, may overlook vital tissue-specific responses and often limit the scope of novel genes. This study leveraged gene co-expression network analysis to elucidate tissue-specific transcriptional responses and to identify core genes implicated in the IVM response in P. univalens. Adult worms (n = 28) were exposed to 10-11 M and 10-9 M IVM in vitro for 24 hours. RNA-sequencing examined transcriptional changes in the anterior end and intestine. Differential expression analysis revealed pronounced tissue differences, with the intestine exhibiting substantially more IVM-induced transcriptional activity. Gene co-expression network analysis identified seven modules significantly associated with the response to IVM. Within these, 219 core genes were detected, largely expressed in the intestinal tissue and spanning diverse biological processes with unspecific patterns. After 10-11 M IVM, intestinal tissue core genes showed transcriptional suppression, cell cycle inhibition, and ribosomal alterations. Interestingly, genes PgR028_g047 (sorb-1), PgB01_g200 (gmap-1) and PgR046_g017 (col-37 & col-102) switched from downregulation at 10-11 M to upregulation at 10-9 M IVM. The 10-9 M concentration induced expression of cuticle and membrane integrity core genes in the intestinal tissue. No clear core gene patterns were visible in the anterior end after 10-11 M IVM. However, after 10-9 M IVM, the anterior end mostly displayed downregulation, indicating disrupted transcriptional regulation. One interesting finding was the non-modular calcium-signaling gene, PgR047_g066 (gegf-1), which uniquely connected 71 genes across four modules. These genes were enriched for transmembrane signaling activity, suggesting that PgR047_g066 (gegf-1) could have a key signaling role. By unveiling tissue-specific expression patterns and highlighting biological processes through unbiased core gene detection, this study reveals intricate IVM responses in P. univalens. These findings suggest alternative drug uptake of IVM and can guide functional validations to further IVM resistance mechanism understanding.
Assuntos
Anti-Helmínticos , Ascaridoidea , Cavalos/genética , Animais , Ivermectina/farmacologia , Anti-Helmínticos/farmacologia , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Ascaridoidea/genética , Resistência a Medicamentos/genéticaRESUMO
Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.
Assuntos
Giardia lamblia , Proteínas Ferro-Enxofre , Humanos , Giardia lamblia/genética , Giardia lamblia/metabolismo , Anaerobiose , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismoRESUMO
Giardia intestinalis is a non-invasive, protozoan parasite infecting the upper small intestine of most mammals. Symptomatic infections cause the diarrhoeal disease giardiasis in humans and animals, but at least half of the infections are asymptomatic. However, the molecular underpinnings of these different outcomes of the infection are still poorly defined. Here, we studied the early transcriptional response to G. intestinalis trophozoites, the disease-causing life-cycle stage, in human enteroid-derived, 2-dimensional intestinal epithelial cell (IEC) monolayers. Trophozoites preconditioned in media that maximise parasite fitness triggered only neglectable inflammatory transcription in the IECs during the first hours of co-incubation. By sharp contrast, "non-fit" or lysed trophozoites induced a vigorous IEC transcriptional response, including high up-regulation of many inflammatory cytokines and chemokines. Furthermore, "fit" trophozoites could even suppress the stimulatory effect of lysed trophozoites in mixed infections, suggesting active G. intestinalis suppression of the IEC response. By dual-species RNA-sequencing, we defined the IEC and G. intestinalis gene expression programs associated with these differential outcomes of the infection. Taken together, our results inform on how G. intestinalis infection can lead to such highly variable effects on the host, and pinpoints trophozoite fitness as a key determinant of the IEC response to this common parasite.
Assuntos
Giardia lamblia , Giardíase , Animais , Humanos , Giardíase/metabolismo , Trofozoítos/metabolismo , Intestinos , Giardia lamblia/metabolismo , Células Epiteliais/metabolismo , MamíferosRESUMO
Parasitic nematodes pose a significant threat to human and animal health, as well as cause economic losses in the agricultural sector. The use of anthelmintic drugs, such as Ivermectin (IVM), to control these parasites has led to widespread drug resistance. Identifying genetic markers of resistance in parasitic nematodes can be challenging, but the free-living nematode Caenorhabditis elegans provides a suitable model. In this study, we aimed to analyze the transcriptomes of adult C. elegans worms of the N2 strain exposed to the anthelmintic drug Ivermectin (IVM), and compare them to those of the resistant strain DA1316 and the recently identified Abamectin Quantitative Trait Loci (QTL) on chromosome V. We exposed pools of 300 adult N2 worms to IVM (10-7 and 10-8 M) for 4 hours at 20°C, extracted total RNA and sequenced it on the Illumina NovaSeq6000 platform. Differentially expressed genes (DEGs) were determined using an in-house pipeline. The DEGs were compared to genes from a previous microarray study on IVM-resistant C. elegans and Abamectin-QTL. Our results revealed 615 DEGs (183 up-regulated and 432 down-regulated genes) from diverse gene families in the N2 C. elegans strain. Of these DEGs, 31 overlapped with genes from IVM-exposed adult worms of the DA1316 strain. We identified 19 genes, including the folate transporter (folt-2) and the transmembrane transporter (T22F3.11), which exhibited an opposite expression in N2 and the DA1316 strain and were deemed potential candidates. Additionally, we compiled a list of potential candidates for further research including T-type calcium channel (cca-1), potassium chloride cotransporter (kcc-2), as well as other genes such as glutamate-gated channel (glc-1) that mapped to the Abamectin-QTL.
Assuntos
Anti-Helmínticos , Ivermectina , Animais , Humanos , Ivermectina/farmacologia , Ivermectina/metabolismo , Caenorhabditis elegans/metabolismo , Transcriptoma , Locos de Características Quantitativas , Anti-Helmínticos/farmacologia , Resistência a Medicamentos/genéticaRESUMO
Benzimidazole-2-carbamates (BZ, e.g., albendazole; ALB), which bind ß-tubulin to disrupt microtubule polymerization, are one of two primary compound classes used to treat giardiasis. In most parasitic nematodes and fungi, BZ-resistance is caused by ß-tubulin mutations and its molecular mode of action (MOA) is well studied. In contrast, in Giardia duodenalis BZ MOA or resistance is less well understood, may involve target-specific and broader impacts including cellular damage and oxidative stress, and its underlying cause is not clearly determined. Previously, we identified acquisition of a single nucleotide polymorphism, E198K, in ß-tubulin in ALB-resistant (ALB-R) G. duodenalis WB-1B relative to ALB-sensitive (ALB-S) parental controls. E198K is linked to BZ-resistance in fungi and its allelic frequency correlated with the magnitude of BZ-resistance in G. duodenalis WB-1B. Here, we undertook detailed transcriptomic comparisons of these ALB-S and ALB-R G. duodenalis WB-1B cultures. The primary transcriptional changes with ALB-R in G. duodenalis WB-1B indicated increased protein degradation and turnover, and up-regulation of tubulin, and related genes, associated with the adhesive disc and basal bodies. These findings are consistent with previous observations noting focused disintegration of the disc and associated structures in Giardia duodenalis upon ALB exposure. We also saw transcriptional changes with ALB-R in G. duodenalis WB-1B consistent with prior observations of a shift from glycolysis to arginine metabolism for ATP production and possible changes to aspects of the vesicular trafficking system that require further investigation. Finally, we saw mixed transcriptional changes associated with DNA repair and oxidative stress responses in the G. duodenalis WB-1B line. These changes may be indicative of a role for H2O2 degradation in ALB-R, as has been observed in other G. duodenalis cell cultures. However, they were below the transcriptional fold-change threshold (log2FC > 1) typically employed in transcriptomic analyses and appear to be contradicted in ALB-R G. duodenalis WB-1B by down-regulation of the NAD scavenging and conversion pathways required to support these stress pathways and up-regulation of many highly oxidation sensitive iron-sulphur (FeS) cluster based metabolic enzymes.
Assuntos
Giardia lamblia , Parasitos , Animais , Humanos , Albendazol/farmacologia , Giardia lamblia/genética , Tubulina (Proteína)/genética , Transcriptoma , Peróxido de HidrogênioRESUMO
Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-electron microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal proteins, but retain some bacterial features. The translocation intermediates, with naturally bound tRNAs and eukaryotic elongation factor 2 (eEF2), display characteristic ribosomal intersubunit rotation and small subunit's head swiveling-universal for translocation. In addition, we observe the eukaryote-specific 'subunit rolling' dynamics, albeit with limited features. Finally, the eEF2·GDP state features a uniquely positioned 'leaving phosphate (Pi)' that proposes hitherto unknown molecular events of Pi and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes from both the structural and mechanistic perspectives.
Assuntos
Giardia lamblia , Humanos , Giardia lamblia/genética , Microscopia Crioeletrônica , Modelos Moleculares , Ribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , RNA de Transferência/metabolismo , Eucariotos/metabolismo , Bactérias/metabolismo , Fator 2 de Elongação de Peptídeos/química , Biossíntese de ProteínasRESUMO
Spironucleus salmonicida is a diplomonad causing systemic infection in salmon. The first S. salmonicida genome assembly was published 2014 and has been a valuable reference genome in protist research. However, the genome assembly is fragmented without assignment of the sequences to chromosomes. In our previous Giardia genome study, we have shown how a fragmented genome assembly can be improved with long-read sequencing technology complemented with optical maps. Combining Pacbio long-read sequencing technology and optical maps, we are presenting here this new S. salmonicida genome assembly in nine near-complete chromosomes with only three internal gaps at long repeats. This new genome assembly is not only more complete sequence-wise but also more complete at annotation level, providing more details into gene families, gene organizations and chromosomal structure. This near-complete reference genome will aid comparative genomics at chromosomal level, and serve as a valuable resource for the diplomonad community and protist research.
Assuntos
Diplomonadida , Genoma de Protozoário , Cromossomos/genética , Diplomonadida/genética , Genômica , Anotação de Sequência Molecular , Análise de Sequência de DNARESUMO
BACKGROUND: Giardia lamblia, a parasitic protist of the Metamonada supergroup, has evolved one of the most diverged endocytic compartment systems investigated so far. Peripheral endocytic compartments, currently known as peripheral vesicles or vacuoles (PVs), perform bulk uptake of fluid phase material which is then digested and sorted either to the cell cytosol or back to the extracellular space. RESULTS: Here, we present a quantitative morphological characterization of these organelles using volumetric electron microscopy and super-resolution microscopy (SRM). We defined a morphological classification for the heterogenous population of PVs and performed a comparative analysis of PVs and endosome-like organelles in representatives of phylogenetically related taxa, Spironucleus spp. and Tritrichomonas foetus. To investigate the as-yet insufficiently understood connection between PVs and clathrin assemblies in G. lamblia, we further performed an in-depth search for two key elements of the endocytic machinery, clathrin heavy chain (CHC) and clathrin light chain (CLC), across different lineages in Metamonada. Our data point to the loss of a bona fide CLC in the last Fornicata common ancestor (LFCA) with the emergence of a protein analogous to CLC (GlACLC) in the Giardia genus. Finally, the location of clathrin in the various compartments was quantified. CONCLUSIONS: Taken together, this provides the first comprehensive nanometric view of Giardia's endocytic system architecture and sheds light on the evolution of GlACLC analogues in the Fornicata supergroup and, specific to Giardia, as a possible adaptation to the formation and maintenance of stable clathrin assemblies at PVs.
Assuntos
Giardia lamblia , Clatrina/metabolismo , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Cadeias Leves de Clatrina/metabolismo , Endocitose , Giardia lamblia/genética , Giardia lamblia/metabolismo , FilogeniaRESUMO
Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus, a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation are presented, as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.
Assuntos
Giardia lamblia , Variação Antigênica/genética , Antígenos de Protozoários , Antígenos de Superfície/genética , Cisteína/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo , Proteínas de Membrana/genética , Proteínas de Protozoários/genéticaRESUMO
Giardia intestinalis is a protozoan parasite causing diarrheal disease, giardiasis, after extracellular infection of humans and other mammals' intestinal epithelial cells (IECs) of the upper small intestine. The parasite has two main life cycle stages: replicative trophozoites and transmissive cysts. Differentiating parasites (encysting cells) and trophozoites have recently been shown to be present in the same regions of the upper small intestine, whereas most mature cysts are found further down in the intestinal system. To learn more about host-parasite interactions during Giardia infections, we used an in vitro model of the parasite's interaction with host IECs (differentiated Caco-2 cells) and Giardia WB trophozoites, early encysting cells (7 h), and cysts. Dual RNA sequencing (Dual RNAseq) was used to identify differentially expressed genes (DEGs) in both Giardia and the IECs, which might relate to establishing infection and disease induction. In the human cells, the largest gene expression changes were found in immune and MAPK signaling, transcriptional regulation, apoptosis, cholesterol metabolism and oxidative stress. The different life cycle stages of Giardia induced a core of similar DEGs but at different levels and there are many life cycle stage-specific DEGs. The metabolic protein PCK1, the transcription factors HES7, HEY1 and JUN, the peptide hormone CCK and the mucins MUC2 and MUC5A are up-regulated in the IECs by trophozoites but not cysts. Cysts specifically induce the chemokines CCL4L2, CCL5 and CXCL5, the signaling protein TRKA and the anti-bacterial protein WFDC12. The parasite, in turn, up-regulated a large number of hypothetical genes, high cysteine membrane proteins (HCMPs) and oxidative stress response genes. Early encysting cells have unique DEGs compared to trophozoites (e.g. several uniquely up-regulated HCMPs) and interaction of these cells with IECs affected the encystation process. Our data show that different life cycle stages of Giardia induce different gene expression responses in the host cells and that the IECs in turn differentially affect the gene expression in trophozoites and early encysting cells. This life cycle stage-specific host-parasite cross-talk is an important aspect to consider during further studies of Giardia's molecular pathogenesis.
Assuntos
Cistos , Giardíase , Animais , Células CACO-2 , Células Epiteliais/metabolismo , Giardia/genética , Giardíase/parasitologia , Humanos , Estágios do Ciclo de Vida , Mamíferos/genética , Proteínas , Proteínas de Protozoários/genética , Análise de Sequência de RNA , Trofozoítos/metabolismoRESUMO
Giardiasis is a diarrheal disease caused by the unicellular parasite Giardia intestinalis, for which metronidazole is the main treatment option. The parasite is dependent on exogenous deoxyribonucleosides for DNA replication and thus is also potentially vulnerable to deoxyribonucleoside analogs. Here, we characterized the G. intestinalis thymidine kinase, a divergent member of the thymidine kinase 1 family that consists of two weakly homologous parts within one polypeptide. We found that the recombinantly expressed enzyme is monomeric, with 100-fold higher catalytic efficiency for thymidine compared to its second-best substrate, deoxyuridine, and is furthermore subject to feedback inhibition by dTTP. This efficient substrate discrimination is in line with the lack of thymidylate synthase and dUTPase in the parasite, which makes deoxy-UMP a dead-end product that is potentially harmful if converted to deoxy-UTP. We also found that the antiretroviral drug azidothymidine (AZT) was an equally good substrate as thymidine and was active against WT as well as metronidazole-resistant G. intestinalis trophozoites. This drug inhibited DNA synthesis in the parasite and efficiently decreased cyst production in vitro, which suggests that it could reduce infectivity. AZT also showed a good effect in G. intestinalis-infected gerbils, reducing both the number of trophozoites in the small intestine and the number of viable cysts in the stool. Taken together, these results suggest that the absolute dependency of the parasite on thymidine kinase for its DNA synthesis can be exploited by AZT, which has promise as a future medication effective against metronidazole-refractory giardiasis.
Assuntos
Replicação do DNA , Giardia lamblia , Proteínas de Protozoários , Timidina Quinase , Zidovudina , Animais , Descoberta de Drogas , Gerbillinae , Giardia lamblia/enzimologia , Giardia lamblia/genética , Giardíase/tratamento farmacológico , Metronidazol/uso terapêutico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Timidina , Timidina Quinase/antagonistas & inibidores , Timidina Quinase/genética , Zidovudina/farmacologiaRESUMO
BACKGROUND: The nematode Parascaris univalens is one of the most prevalent parasitic pathogens infecting horses but anthelmintic resistance undermines treatment approaches. The molecular mechanisms underlying drug activity and resistance remain poorly understood in this parasite since experimental in vitro models are lacking. The aim of this study was to evaluate the use of Caenorhabditis elegans as a model for P. univalens drug metabolism/resistance studies by a comparative gene expression approach after in vitro exposure to the anthelmintic drug ivermectin (IVM). METHODS: Twelve adult P. univalens worms in groups of three were exposed to ivermectin (IVM, 10-13 M, 10-11 M, 10-9 M) or left unexposed for 24 h at 37 °C, and total RNA, extracted from the anterior end of the worms, was sequenced using Illumina NovaSeq. Differentially expressed genes (DEGs) involved in metabolism, transportation, or gene expression with annotated Caernorhabditis elegans orthologues were identified as candidate genes to be involved in IVM metabolism/resistance. Similarly, groups of 300 adult C. elegans worms were exposed to IVM (10-9 M, 10-8 M and 10-7 M) or left unexposed for 4 h at 20 °C. Quantitative RT-PCR of RNA extracted from the C. elegans worm pools was used to compare against the expression of selected P. univalens candidate genes after drug treatment. RESULTS: After IVM exposure, 1085 DEGs were found in adult P. univalens worms but the relative gene expression changes were small and large variabilities were found between different worms. Fifteen of the DEGs were chosen for further characterization in C. elegans after comparative bioinformatics analyses. Candidate genes, including the putative drug target lgc-37, responded to IVM in P. univalens, but marginal to no responses were observed in C. elegans despite dose-dependent behavioral effects observed in C. elegans after IVM exposure. Thus, the overlap in IVM-induced gene expression in this small set of genes was minor in adult worms of the two nematode species. CONCLUSION: This is the first time to our knowledge that a comparative gene expression approach has evaluated C. elegans as a model to understand IVM metabolism/resistance in P. univalens. Genes in P. univalens adults that responded to IVM treatment were identified. However, identifying conserved genes in P. univalens and C. elegans involved in IVM metabolism/resistance by comparing gene expression of candidate genes proved challenging. The approach appears promising but was limited by the number of genes studied (n = 15). Future studies comparing a larger number of genes between the two species may result in identification of additional candidate genes involved in drug metabolism and/or resistance.
Assuntos
Anti-Helmínticos , Ascaridoidea , Animais , Anti-Helmínticos/uso terapêutico , Caenorhabditis elegans , Resistência a Medicamentos/genética , Expressão Gênica , Cavalos , Ivermectina/uso terapêutico , RNA/metabolismoRESUMO
Metronidazole (MTZ) is a clinically important antimicrobial agent that is active against both bacterial and protozoan organisms. MTZ has been used extensively for more than 60 years and until now resistance has been rare. However, a recent and dramatic increase in the number of MTZ resistant bacteria and protozoa is of great concern since there are few alternative drugs with a similarly broad activity spectrum. To identify key factors and mechanisms underlying MTZ resistance, we utilized the protozoan parasite Giardia intestinalis, which is commonly treated with MTZ. We characterized two in vitro selected, metronidazole resistant parasite lines, as well as one revertant, by analyzing fitness aspects associated with increased drug resistance and transcriptomes and proteomes. We also conducted a meta-analysis using already existing data from additional resistant G. intestinalis isolates. The combined data suggest that in vitro generated MTZ resistance has a substantial fitness cost to the parasite, which may partly explain why resistance is not widespread despite decades of heavy use. Mechanistically, MTZ resistance in Giardia is multifactorial and associated with complex changes, yet a core set of pathways involving oxidoreductases, oxidative stress responses and DNA repair proteins, is central to MTZ resistance in both bacteria and protozoa.
RESUMO
Giardia intestinalis is an intestinal protozoan parasite that causes diarrheal infections worldwide. A key process to sustain its chain of transmission is the formation of infectious cysts in the encystation process. We combined deep RNAseq of a broad range of encystation timepoints to produce a high-resolution gene expression map of Giardia encystation. This detailed transcriptomic map of encystation confirmed a gradual change of gene expression along the time course of encystation, showing the most significant gene expression changes during late encystation. Few genes are differentially expressed early in encystation, but the major cyst wall proteins CWP-1 and -2 are highly up-regulated already after 3.5 h encystation. Several transcription factors are sequentially up-regulated throughout the process, but many up-regulated genes at 7, 10, and 14 h post-induction of encystation have binding sites in the upstream regions for the Myb2 transcription factor, suggesting that Myb2 is a master regulator of encystation. We observed major changes in gene expression of several meiotic-related genes from 10.5 h of encystation to the cyst stage, and at 17.5 h encystation, there are changes in many different metabolic pathways and protein synthesis. Late encystation, 21 h to cysts, show extensive gene expression changes, most of all in VSP and HCMP genes, which are involved in antigenic variation, and genes involved in chromatin modifications. This high-resolution gene expression map of Giardia encystation will be an important tool in further studies of this important differentiation process.
Assuntos
Giardia lamblia/genética , Encistamento de Parasitas/genética , Expressão Gênica , Giardia lamblia/fisiologia , RNA-SeqRESUMO
BACKGROUND: Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS: Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS: The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.
Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Galinhas/genética , Coccidiose/genética , Coccidiose/veterinária , Eimeria tenella/genética , Perfilação da Expressão Gênica , Doenças das Aves Domésticas/genética , RNA-SeqRESUMO
The proteoglycan serglycin (SG) is expressed by different innate and adaptive immune cells, e.g. mast cells, macrophages, neutrophils, and cytotoxic T lymphocytes, where SG contributes to correct granule storage and extracellular activity of inflammatory mediators. Here the serglycin-deficient (SG-/-) mouse strain was used to investigate the impact of SG on intestinal immune responses during infection with the non-invasive protozoan parasite Giardia intestinalis. Young (≈11 weeks old) oral gavage-infected congenic SG-/- mice showed reduced weight gain as compared with the infected SG+/+ littermate mice and the PBS-challenged SG-/- and SG+/+ littermate mice. The infection caused no major morphological changes in the small intestine. However, a SG-independent increased goblet cell and granulocyte cell count was observed, which did not correlate with an increased myeloperoxidase or neutrophil elastase activity. Furthermore, infected mice showed increased serum IL-6 levels, with significantly reduced serum IL-6 levels in infected SG-deficient mice and decreased intestinal expression levels of IL-6 in the infected SG-deficient mice. In infected mice the qPCR analysis of alarmins, chemokines, cytokines, and nitric oxide synthases (NOS), showed that the SG-deficiency caused reduced intestinal expression levels of TNF-α and CXCL2, and increased IFN-γ, CXCL1, and NOS1 levels as compared with SG-competent mice. This study shows that SG plays a regulatory role in intestinal immune responses, reflected by changes in chemokine and cytokine expression levels and a delayed weight gain in young SG-/- mice infected with G. intestinalis.
Assuntos
Quimiocinas/metabolismo , Giardia lamblia/genética , Giardíase/imunologia , Imunidade Inata/genética , Intestino Delgado/imunologia , Proteoglicanas/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte Vesicular/metabolismo , Aumento de Peso/genética , Animais , DNA de Protozoário/genética , Modelos Animais de Doenças , Feminino , Giardíase/parasitologia , Células Caliciformes/imunologia , Elastase de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Proteoglicanas/genética , Transdução de Sinais/imunologia , Proteínas de Transporte Vesicular/genéticaRESUMO
Cyst formation in the parasitic protist Giardia duodenalis is critical to its transmission. Existing proteomic data quantifies only 17% of coding genes transcribed during encystation and does not cover the complete process from trophozoite to mature cyst. Using high-resolution mass spectrometry, we have quantified proteomic changes across encystation and compared this with published transcriptomic data. We reproducibly identified 3863 (64.5% of Giardia proteins) and quantified 3382 proteins (56.5% of Giardia proteins) over standard trophozoite growth (TY), during low-bile encystation priming (LB), 16 h into encystation (EC), and at cyst maturation (C). This work provides the first known expanded observation of encystation at the proteomic level and triples the coverage of previous encystation proteomes. One-third (1169 proteins) of the quantified proteome is differentially expressed in the mature cyst relative to the trophozoite, including proteasomal machinery, metabolic pathways, and secretory proteins. Changes in lipid metabolism indicated a shift in lipid species dependency during encystation. Consistent with this, we identified the first, putative lipid transporters in this species, representing the steroidogenic acute regulatory protein-related lipid transfer (StARkin), oxysterol binding protein related protein (ORP/Osh) and glycosphingolipid transfer protein (GLTP) families, and follow their differential expression over cyst formation. Lastly, we undertook correlation analyses of the transcriptome and proteome of trophozoites and cysts, and found evidence of post-transcriptional regulation of key protein classes (RNA binding proteins) and stage-specific genes (encystation markers) implicating translation-repression in encystation. We provide the most extensive proteomic analysis of encystation in Giardia to date and the first known exploration across its complete duration. This work identifies encystation as highly coordinated, involving major changes in proteostasis, metabolism and membrane dynamics, and indicates a potential role for post-transcriptional regulation, mediated through RNA-binding proteins. Together our work provides a valuable resource for Giardia research and the development of transmission-blocking anti-giardials.
Assuntos
Giardia lamblia , Giardíase , Animais , Giardia lamblia/genética , Humanos , Proteômica , Proteínas de Protozoários/genética , TrofozoítosRESUMO
The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (24 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.
Assuntos
Eimeria tenella/fisiologia , Macrófagos/parasitologia , RNA-Seq/métodos , Animais , Linhagem Celular , Galinhas , Eimeria tenella/genética , Eimeria tenella/imunologia , Eimeria tenella/isolamento & purificação , Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , RNA de Protozoário/química , RNA de Protozoário/isolamento & purificação , Transcrição GênicaRESUMO
Interactions between individual pathogenic microbes and host tissues involve fast and dynamic processes that ultimately impact the outcome of infection. Using live-cell microscopy, these dynamics can be visualized to study, e.g., microbe motility, binding and invasion of host cells, and intrahost-cell survival. Such methodology typically employs confocal imaging of fluorescent tags in tumor-derived cell line infections on glass. This allows high-definition imaging but poorly reflects the host tissue's physiological architecture and may result in artifacts. We developed a method for live-cell imaging of microbial infection dynamics on human adult stem cell-derived intestinal epithelial cell (IEC) layers. These IEC layers are grown in apical imaging chambers, optimized for physiological cell arrangement and fast, but gentle, differential interference contrast (DIC) imaging. This allows subsecond visualization of both microbial and epithelial surface ultrastructure at high resolution without using fluorescent reporters. We employed this technology to probe the behavior of two model pathogens, Salmonella enterica serovar Typhimurium and Giardia intestinalis, at the intestinal epithelial surface. Our results reveal pathogen-specific swimming patterns on the epithelium and show that Salmonella lingers on the IEC surface for prolonged periods before host cell invasion, while Giardia uses circular swimming with intermittent attachments to scout for stable adhesion sites. The method even permits tracking of individual Giardia flagella, demonstrating that active flagellar beating and attachment to the IEC surface are not mutually exclusive. This work describes a generalizable and relatively inexpensive approach to resolving dynamic pathogen-IEC layer interactions, applicable even to genetically nontractable microorganisms. IMPORTANCE Knowledge of dynamic niche-specific interactions between single microbes and host cells is essential to understand infectious disease progression. However, advances in this field have been hampered by the inherent conflict between the technical requirements for high-resolution live-cell imaging on the one hand and conditions that best mimic physiological infection niche parameters on the other. Toward bridging this divide, we present a methodology for differential interference contrast (DIC) imaging of pathogen interactions at the apical surface of enteroid-derived intestinal epithelia, providing both high spatial and temporal resolution. This alleviates the need for fluorescent reporters in live-cell imaging and provides dynamic information about microbe interactions with a nontransformed, confluent, polarized, and microvilliated human gut epithelium. Using this methodology, we uncover previously unrecognized stages of Salmonella and Giardia infection cycles at the epithelial surface.