Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 73(7): 1185-1193, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900407

RESUMO

BACKGROUND: Penicillin and ciprofloxacin are important for invasive meningococcal disease (IMD) management and prevention. IMD cases caused by penicillin- and ciprofloxacin-resistant Neisseria meningitidis containing a ROB-1 ß-lactamase gene (blaROB-1) and a mutated DNA gyrase gene (gyrA) have been recently reported in the United States. METHODS: We examined 2097 meningococcal genomes collected through US population-based surveillance from January 2011 to February 2020 to identify IMD cases caused by strains with blaROB-1- or gyrA-mediated resistance. Antimicrobial resistance was confirmed phenotypically. The US isolate genomes were compared to non-US isolate genomes containing blaROB-1. Interspecies transfer of ciprofloxacin resistance was assessed by comparing gyrA among Neisseria species. RESULTS: Eleven penicillin- and ciprofloxacin-resistant isolates were identified after December 2018; all were serogroup Y, sequence type 3587, clonal complex (CC) 23, and contained blaROB-1 and a T91I-containing gyrA allele. An additional 22 penicillin-resistant, blaROB-1- containing US isolates with wild-type gyrA were identified from 2013 to 2020. All 33 blaROB-1-containing isolates formed a single clade, along with 12 blaROB-1-containing isolates from 6 other countries. Two-thirds of blaROB-1-containing US isolates were from Hispanic individuals. Twelve additional ciprofloxacin-resistant isolates with gyrA T91 mutations were identified. Ciprofloxacin-resistant isolates belonged to 6 CCs and contained 10 unique gyrA alleles; 7 were similar or identical to alleles from Neisseria lactamica or Neisseria gonorrhoeae. CONCLUSIONS: Recent IMD cases caused by a dual resistant serogroup Y suggest changing antimicrobial resistance patterns in the United States. The emerging dual resistance is due to acquisition of ciprofloxacin resistance by ß-lactamase-containing N. meningitidis. Routine antimicrobial resistance surveillance will effectively monitor resistance changes and spread.


Assuntos
Antibacterianos , Ciprofloxacina , Farmacorresistência Bacteriana , Infecções Meningocócicas , Neisseria meningitidis Sorogrupo Y , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Humanos , Infecções Meningocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Neisseria meningitidis Sorogrupo Y/efeitos dos fármacos , Neisseria meningitidis Sorogrupo Y/genética , Sorogrupo , Estados Unidos/epidemiologia , beta-Lactamases/genética
2.
MMWR Morb Mortal Wkly Rep ; 69(24): 735-739, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32555137

RESUMO

Meningococcal disease is a sudden-onset, life-threatening illness caused by the bacterium Neisseria meningitidis. Prompt empiric antibiotic treatment can reduce morbidity and mortality among patients, and antibiotic prophylaxis can prevent secondary disease in close contacts. Historically, N. meningitidis isolates in the United States have largely been susceptible to the antibiotics recommended for treatment and prophylaxis, including penicillin and ciprofloxacin. This report describes detection of penicillin-resistant and ciprofloxacin-resistant N. meningitidis serogroup Y (NmY) isolates in the United States. NmY isolates containing a blaROB-1 ß-lactamase enzyme gene conferring resistance to penicillins (1) were recovered from 33 cases reported during 2013-2020. Isolates from 11 of these cases, reported during 2019-2020, harbored a ciprofloxacin resistance-associated mutation in a chromosomal gene (gyrA). Cases were reported from 12 geographically disparate states; a majority of cases (22 of 33, 67%) occurred in Hispanic persons. These cases represent a substantial increase in penicillin-resistant and ciprofloxacin-resistant meningococci in the United States since 2013. Ceftriaxone and cefotaxime, the recommended first-line agents for empiric bacterial meningitis treatment, can continue to be used for treatment, but health care providers should ascertain susceptibility of meningococcal isolates to penicillin before switching to penicillin or ampicillin. Ongoing monitoring for antimicrobial resistance among meningococcal isolates and prophylaxis failures will be important to inform treatment and prophylaxis recommendations.


Assuntos
Ciprofloxacina/farmacologia , Resistência Microbiana a Medicamentos , Neisseria meningitidis/isolamento & purificação , beta-Lactamases/biossíntese , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/genética , Sorogrupo , Estados Unidos , Adulto Jovem
3.
Artigo em Inglês | MEDLINE | ID: mdl-32540972

RESUMO

The treatment of infections caused by carbapenem-resistant Enterobacterales, especially New Delhi metallo-ß-lactamase (NDM)-producing bacteria, is challenging. Although less common in the United States than some other carbapenemase producers, NDM-producing bacteria are a public health threat due to the limited treatment options available. Here, we report on the antibiotic susceptibility of 275 contemporary NDM-producing Enterobacterales collected from 30 U.S. states through the Centers for Disease Control and Prevention's Antibiotic Resistance Laboratory Network. The aims of the study were to determine the susceptibility of these isolates to 32 currently available antibiotics using reference broth microdilution and to explore the in vitro activity of 3 combination agents that are not yet available. Categorical interpretations were determined using Clinical and Laboratory Standards Institute (CLSI) interpretive criteria. For agents without CLSI criteria, Food and Drug Administration (FDA) interpretive criteria were used. The percentage of susceptible isolates did not exceed 90% for any of the FDA-approved antibiotics tested. The antibiotics with breakpoints that had the highest in vitro activity were tigecycline (86.5% susceptible), eravacycline (66.2% susceptible), and omadacycline (59.6% susceptible); 18.2% of isolates were susceptible to aztreonam. All NDM-producing isolates tested were multidrug resistant, and 116 isolates were extensively drug resistant (42.2%); 207 (75.3%) isolates displayed difficult-to-treat resistance. The difficulty in treating infections caused by NDM-producing Enterobacterales highlights the need for containment and prevention efforts to keep these infections from becoming more common.


Assuntos
Enterobacteriaceae , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...