Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 181(1): 125-35, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26846312

RESUMO

Time lags in responses of organisms to deteriorating environmental conditions delay population declines and extinctions. We examined how local processes at the population level contribute to extinction debt, and how cycles of habitat deterioration and recovery may delay extinction. We carried out a demographic analysis of the fate of the grassland perennial Primula veris after the cessation of grassland management, where we used either a unidirectional succession model for forest habitat or a rotation model with a period of forest growth followed by a clear-cut and a new successional cycle. The simulations indicated that P. veris populations may have an extinction time of decades to centuries after a detrimental management change. A survey of the current incidence and abundance of P. veris in sites with different histories of afforestation confirmed the simulation results of low extinction rates. P. veris had reduced incidence and abundance only at sites with at least 100 years of forest cover. Time to extinction in simulations was dependent on the duration of the periods with favourable and unfavourable conditions after management cessation, and the population sizes and growth rates in these periods. Our results thus suggest that the ability of a species to survive is a complex function of disturbance regimes, rates of successional change, and the demographic response to environmental changes. Detailed demographic studies over entire successional cycles are therefore essential to identify the environmental conditions that enable long-term persistence and to design management for species experiencing extinction debts.


Assuntos
Florestas , Pradaria , Primula/fisiologia , Finlândia , Modelos Biológicos , Dinâmica Populacional , Suécia
2.
Cladistics ; 26(3): 281-300, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34875784

RESUMO

Numerous species of microscopic fungi inhabit mosses and hepatics. They are severely overlooked and their identity and nutritional strategies are mostly unknown. Most of these bryosymbiotic fungi belong to the Ascomycota. Their fruit-bodies are extremely small, often reduced and simply structured, which is why they cannot be reliably identified and classified by their morphological and anatomical characters. A phylogenetic hypothesis of bryosymbiotic ascomycetes is presented. New sequences of 78 samples, including 61 bryosymbionts, were produced, the total amount of terminals being 206. Of these, 202 are Ascomycetes. Sequences from the following five gene loci were used: rDNA SSU, rDNA LSU, RPB2, mitochondrial rDNA SSU, and rDNA 5.8S. The program TNT was used for tree search and support value estimation. We show that bryosymbiotic fungi occur in numerous lineages, one of which represents a newly discovered lineage among the Ascomycota and exhibits a tripartite association with cyanobacteria and sphagna. A new genus Trizodia is proposed for this basal clade. Our results demonstrate that even highly specialized life strategies can be adopted multiple times during evolution, and that in many cases bryosymbionts appear to have evolved from saprobic ancestors. © The Willi Hennig Society 2009.

3.
Conserv Biol ; 20(3): 833-43, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16913047

RESUMO

Although the effects of deterministic factors on population viability often are more important than stochasticity, few researchers have dealt with the effect of deterministic habitat changes on plant population demography. We assessed population viability for the perennial herb Primula veris L. and identified targets for management based on demographic data from five different habitat types representing different degrees of canopy closure. We conducted replicate studies at the border of the distribution area and in more central parts. Demographic patterns were similar between the two regions. Most study populations had a positive population growth, and only populations in late phases of forest succession showed consistently negative trends. The populations of open habitats had high seedling recruitment, and the populations of early and middle forest succession had high seed production. The importance of survival for population growth rate increased with increasing habitat closure, whereas the importance of growth and reproduction decreased. Results of the elasticity analysis suggested that the best method to manage decreasing late-successional populations is to increase survival of the largest individuals. The life-table response experiment (LTRE) analysis, however showed that survival of the largest individuals contributed little to differences in population growth rates of different habitats, whereas seed production and growth of small individuals were more important. Moreover direct perturbation of the performance of the largest stages showed that late-successional populations would not attain positive population growth even if the largest stages had no mortality at all. We conclude that restoration of recruitment is the only possibility for positive population growth in late-successional populations of P. veris, although the elasticities of recruitment transitions are low. Our results also suggest that retrospective demographic methods such as LTRE constitute an important and necessary complement to prospective methods such as elasticities in identifying management targets.


Assuntos
Conservação de Recursos Energéticos/métodos , Ecossistema , Primula/fisiologia , Dinâmica Populacional
4.
Oecologia ; 133(4): 510-516, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28466172

RESUMO

The geographic mosaic theory of co-evolution states that evolution of interactions is driven by geographical variation in interactions between species. We investigated whether the intensity of pre-dispersal seed predation differed among nine Primula veris populations over 5 years, and whether such differences lead to geographical variation in selection on flower number. Seed predation intensity differed significantly among years and populations, and it increased with canopy closure and decreased with the density of the field layer vegetation. Individuals in open habitats also produced the highest number of flowers. Moreover, the phenotypic selection on flower number differed among years and populations. In populations of closed habitats, with high seed predation pressure, the increased number of flowers was often correlated with an increased number of damaged capsules. However, an increased flower number did not result in fewer intact fruits due to seed predation in any population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...