Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 230: 115590, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887936

RESUMO

HA-based hybrid hydrogels were successfully developed. The polysaccharide (HA) chains were chemically modified and hybridized via amidation of their carboxylic groups with aminosilane molecules. HA-polysaccharide chains were crosslinked by a 3D siloxane organic-inorganic matrix via sol-gel. The novel inorganic crosslinking network (PDMS-SiO2) provided to sodium hyaluronate (HA) strong chemical bonds, giving restriction to their natural hydrophilicity and stiffness to its structure (improved rheological properties). It was observed that synthesis conditions such as starting HA concentration solution and temperature determined gelling times, efficiency in the polysaccharide chemical modification and in crosslinking hydrolysis-condensation reactions, resulting in the siloxane organic-inorganic matrix. Drying processes influenced crosslinking in HA hybrid hydrogels, either by enhancing polycondensation reactions or inhibiting them. Room temperature-drying produced more densified hybrid structures. Freeze-drying increased porosity and surface hydroxyl groups (-OH) resulting in more Q3 structural units. 60 °C-drying boosted polycondensation of monodendate structural units, enhancing the formation of hybrid D-Q bonds.

2.
Mater Sci Eng C Mater Biol Appl ; 75: 375-384, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415475

RESUMO

Titanium compounds have demonstrated great interfacial properties with biological tissues whereas a wide variety of polyurethanes have also been successfully probed in medical applications. However, studies about hybrids based on polyurethanes/TiO2 for medical applications are scarce. The aim of this work is to design novel biodegradable hybrid materials based on polyurethanes/TiO2 (80% organic-20% inorganic) and to perform a preliminary study of the potential applications in bone regeneration. The hybrids have been prepared by a sol-gel reaction using titanium isopropoxide as precursor of the inorganic component and polyurethane as the organic one. A series of polyurethanes has been prepared using different polyesters glycol succinate as soft segment, and 1,6-diisocyanatohexane (HDI) and butanediol (BD) as linear hard segment. The spectroscopy techniques used allow to confirm the formation of the required polyurethanes by the identification of bands related to carboxylic groups (COOH), and the amine groups (NH), and also the TiOH bonds and the bonds related to the interconnected network between the inorganic and the organic components from hybrids. The results from SEM/EDS show a homogeneous distribution of the inorganic component into the organic matrix. The nontoxic character of the hybrid (H400) was probed using MG-63 cell line with over 90% of cell viability. Finally, the formation of a hydroxyapatite layer in the material surface after 21days of soaking in SBF shows the bioactive character.


Assuntos
Teste de Materiais , Poliuretanos , Titânio , Animais , Linhagem Celular , Camundongos , Poliuretanos/síntese química , Poliuretanos/química , Poliuretanos/farmacologia , Titânio/química , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA