RESUMO
Several technologies have been introduced into neurorehabilitation programs to enhance traditional treatment of individuals with Spinal Cord Injury (SCI). Their effectiveness has been widely investigated, but their adoption has not been properly quantified. The aim of this study is to assess the distribution of conventional (Treatment As Usual-TAU) and technology-aided (Treatment With Technologies-TWT) treatments conveniently grouped based on different therapeutic goals in a selected SCI unit. Data from 104 individuals collected in 29 months were collected in a custom database and categorized according to both the conventional American Impairment Scale classification and a newly developed Multifactor (MF) clustering approach that considers additional sources of information (the lesion level, the level of independence in the activities of daily living, and the hospitalization duration). Results indicated an average technology adoption of about 30%. Moreover, the MF clusters were less overlapped, and the differences in TWT adoption were more pronounced than in AIS-based clustering. MF clustering was capable of grouping individuals based both on neurological features and functional abilities. In particular, individuals with motor complete injuries were grouped together, whereas individuals with sensorimotor incomplete SCI were collected separately based on the lesion level. As regards TWT adoption, we found that in the case of motor complete SCI, TWT for muscle tone control and modulation was mainly selected (about 90% of TWT), while the other types of TWT were seldom adopted. Even for individuals with incomplete SCI, the most frequent rehabilitation goal was muscle tone modulation (about 75% of TWT), regardless of the AIS level, and technologies to improve walking ability (about 12% of TWT) and balance control (about 10% of TWT) were mainly used for individuals with thoracic or lumbar lesions. Analyzing TAU distribution, we found that the highest adoption of muscle tone modulation strategies was reported in the case of individuals with motor complete SCI (about 42% of TAU), that is, in cases when almost no gait training was pursued (about 1% of TAU). In the case of cervical motor incomplete SCI, compared to thoracic and lumbar incomplete SCI, there was a greater focus on muscle tone control and force recruitment in addition to walking training (38% and 14% of TAU, respectively) than on balance training. Overall, the MF clustering provided more insights than the traditional AIS-based classification, highlighting differences in TWT adoption. These findings suggest that a wider overview that considers both neurological and functional characteristics of individuals after SCI based on a multifactor analysis could enhance the personalization of neurorehabilitation strategies.
RESUMO
The widespread adoption of robotic technologies in healthcare has opened up new perspectives for enhancing accuracy, effectiveness and quality of medical procedures and patients' care. Special attention has been given to the reliability of robots when operating in environments shared with humans and to the users' safety, especially in case of mobile platforms able to navigate autonomously. From the analysis of the literature, it emerges that navigation tests carried out in a hospital environment are preliminary and not standardized. This paper aims to overcome the limitations in the assessment of autonomous mobile robots navigating in hospital environments by proposing: (i) a structured benchmarking protocol composed of a set of standardized tests, taking into account conditions with increasing complexity, (ii) a set of quantitative performance metrics. The proposed approach has been used in a realistic setting to assess the performance of two robotic platforms, namely HOSBOT and TIAGo, with different technical features and developed for different applications in a clinical scenario.
Assuntos
Benchmarking , Hospitais , Robótica , Benchmarking/métodos , Robótica/métodos , HumanosRESUMO
In the dynamic landscape of contemporary healthcare, the imperative for advancing the frontiers of knowledge and improving patient outcomes necessitates a paradigm shift towards a multidisciplinary approach. This background great enhances a nurse's ability to interface with technology and create technical solutions such as robots, patient care devices, or computer simulation for patient care needs and nursing care delivery. This study aims to describe, through a narrative review of evidence, a methodology to develop and manager Nursing-Engineering interdisciplinary project, clarify the key points and facilitate professionals who are not very familiar with this topic. The methodology employed highlights the importance of this kind of research that allows to achieve highest standards of practice leading to improved patient care, innovative solutions and a global contribution to healthcare excellence.
RESUMO
In the last decades, there have been great efforts in the development of advanced polyarticulated prosthetic hands; in contrast, prosthetic wrists have drawn less interest. Nevertheless, increasing the dexterity of the wrist improves handling skills because the wrist allows the prepositioning of the hand before carrying out a task, avoiding the onset of unwanted trunk or shoulders compensatory movements and potential onset or exacerbation of articular injuries. This study presents a novel 2-degree-of-freedom prosthetic wrist module with active pronation/supination and passive elastic flexion/extension. This system is suitable to be included in hand prostheses to improve anthropomorphism and produce a more physiological motion. The first submodule within the socket is able to rotate a prosthetic hand and an external load of 3 kg at 2.6 rad/s. The second one can guarantee a range of motion of ±75° with a centering elastic torque (compliant mode) or it can keep firms grasps (fixed mode). Compliant mode is based on a Scotch-Yoke mechanism converting wrist flexion/extension into the linear motion of a crossbeam acting on compression springs, while fixed mode is achieved by means of a piston that can be engaged/disengaged. The whole module fits with anthropometry and the modular design ensures the proposed system can be used in a stand-alone way and adapted to different hand prostheses. This device is expected to favor a more physiological dexterity with respect to simpler fixed prostheses that can potentially induce harmful motion of body districts not naturally involved in the reaching and grasping tasks.
Assuntos
Desenho de Equipamento , Próteses e Implantes , Punho , Membros Artificiais , Humanos , Amplitude de Movimento Articular , Torque , Mãos/fisiologia , Articulação do PunhoRESUMO
BACKGROUND: Balance is a crucial function of basic Activities of Daily Living (ADL) and is often considered the priority in Spinal Cord Injury (SCI) patients' rehabilitation. Technological devices have been developed to support balance assessment and training, ensuring an earlier, intensive, and goal-oriented motor therapy. OBJECTIVE: The aim of this systematic review is to explore the technology-assisted strategies to assess and rehabilitate balance function in persons with SCI. METHODS: A systematic review was conducted in the databases PubMed, Scopus, IEEE Xplore, Cochrane Library, and Embase. Full reports on Randomized Clinical Trials (RCTs) of parallel-group or cross-over design and non-RCTs were included according to the following criteria: i) publication year from 1990 to 2021; ii) balance considered as a primary or secondary outcome; iii) population of individuals with SCI with age over 18 years old, regardless of traumatic or non-traumatic lesions, Time Since Injury, lesion level, Asia Impairment Scale score and gender. The methodological quality was determined for each included study according to the recognized Downs and Black (D&B) tool. RESULTS: Nineteen articles met the inclusion criteria and were included in the analysis. Four articles focused on balance assessment while 15 targeted rehabilitation interventions to improve balance by using Treadmill-Based Devices (TBD), OverGround Devices (OGD) and Tilt Table Devices (TTD). Statistically significant effects on balance can be found in TBD subcategory, in the hip-knee guidance subcategory of OGD and in the study of TTD category. CONCLUSION: Although different studies reported positive effects, improvements due to technology-assisted rehabilitation were not greater than those obtained by means of other rehabilitation therapies. The heterogeneity, low methodological quality, and the small number of the studies included do not allow general conclusions about the usefulness of technology-assisted balance assessment and training in individuals with SCI, even if significant improvements have been reported in some studies.
Assuntos
Reabilitação Neurológica , Traumatismos da Medula Espinal , Adolescente , Teste de Esforço , Humanos , Modalidades de Fisioterapia , Traumatismos da Medula Espinal/reabilitação , TecnologiaRESUMO
Background: Crutches are the most common walking aids prescribed to improve mobility in subjects with central nervous system (CNS) lesions. To increase adherence to the appropriate level of crutch usage, providing load-related auditory feedback (aFB) may be a useful approach. We sensorized forearm crutches and developed a custom software to provide aFB information to both user and physical therapist (PhT). Aim: Evaluate aFB effects on load control during gait by a self-controlled case series trial. Methods: A single experimental session was conducted enrolling 12 CNS lesioned participants. Load on crutch was recorded during 10 Meter Walk Test performed with and without aFB. In both cases, crutch load data, and gait speed were recorded. Usability and satisfaction questionnaires were administered to participants and PhTs involved. Results: Reliable data were obtained from eight participants. Results showed that compared to the no FB condition, aFB yielded a significant reduction in the mean load on the crutches during gait (p = 0.001). The FB did not influence gait speed or fatigue (p > 0.05). The experience questionnaire data indicated a positive experience regarding the use of aFB from both participants' and PhTs' perspectives. Conclusion: aFB significantly improves compliance with crutch use and does not affect gait speed or fatigue by improving the load placed on crutches. The FB is perceived by users as helpful, safe, and easy to learn, and does not interfere with attention or concentration while walking. Furthermore, the PhTs consider the system to be useful, easy to learn and reliable.
RESUMO
PURPOSE: To examine physiological responses and perceived exertion during robot-assisted treadmill walking in non-ambulatory stroke survivors; compare these outcomes with aerobic exercise recommendations; and investigate the effect of robotic assistance. MATERIALS AND METHODS: Twelve non-ambulatory stroke survivors (67 ± 11 years-old, 84 ± 38 d post-stroke) participated. Subjects walked three times 20 min (1 session/day) in the Lokomat: once with conventional exercise parameters, once with 60% robotic assistance and once with 100% robotic assistance. Gas exchange and heart rate were monitored continuously. Perceived exertion was assessed every 3 min during walking. RESULTS: During conventional robot-assisted treadmill walking, net perceived exertion (0-14 scale) significantly increased between minute 6 (median = 2, interquartile range = 4) and 18 (median = 5, interquartile range = 4). Net physiological responses did not significantly change over time. Throughout exercise, percentage of predicted heart rate reserve was significantly below the 40% threshold (medians: 11-14%) and percentage of predicted maximum heart rate reached the 55% threshold (medians: 59-60%). Perceived exertion reached the 11-point threshold halfway. Net physiological responses and perceived exertion did not significantly differ between 60% and 100% robotic assistance. CONCLUSIONS: The assistance level that non-ambulatory stroke survivors require at their highest tolerable walking speed seems too high to sufficiently stress the cardiorespiratory system during robot-assisted treadmill walking.Implications for rehabilitationThe exercise intensity of 20-minute conventional robot-assisted treadmill walking can be low, and might be too low to challenge the cardiorespiratory system of non-ambulatory stroke survivors.Lowering the level of robotic assistance from 100% to 60% does not seem to increase the exercise intensity of 20-minute robot-assisted treadmill walking.
Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Idoso , Teste de Esforço , Humanos , Pessoa de Meia-Idade , Esforço Físico , Sobreviventes , CaminhadaRESUMO
This work focuses on the design and the validation of a wearable mechatronic device for an at-home assessment of wrist stiffness in patients affected by Parkinson's Disease (PD). The device includes one actuated joint and four passive revolute joints with a high overall intrinsic backdriveability. In order to allow the user to freely move the wrist during activities of daily living, we implemented a transparent controller on the basis of the interaction force sensed by the embedded load cell. Conversely, in order to provide perturbations for estimating the wrist flexion-extension rigidity, we implemented a torque controller. Firstly, we report a pilot study that aimed at characterizing the device in terms of range of motion (ROM) allowed, transparency perceived and torque-tracking capability. Then, we present a case study in which we tested our device with seven PD patients in both drug-OFF and drug-ON conditions and we compared the measured stiffness with the one measured in fourteen healthy controls and with the outcome of the most used clinical scale (MDS-UPDRS). The device allowed to successfully estimate the stiffness as different depending on the movement direction. Indeed, extension stiffness was higher than the flexion one, accordingly to the literature. Moreover, the device allowed to discriminate both Healthy subjects from PD subjects, and PD subjects in OFF condition from PD subjects in ON condition. In conclusion, we demonstrate the feasibility of the device in measuring wrist rigidity, thus enabling the possibility to implement an at-home assessment of the PD rigidity.
Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Humanos , Rigidez Muscular , Doença de Parkinson/diagnóstico , Projetos Piloto , Punho , Articulação do PunhoRESUMO
This paper proposes a novel control algorithm for torque-controlled exoskeletons assisting cyclic movements. The control strategy is based on the injection of energy parcels into the human-robot system with a timing that minimizes perturbations, i.e., when the angular momentum is maximum. Electromyographic activity of main flexor-extensor knee muscles showed that the proposed controller mostly favors extensor muscles during extension, with a statistically significant reduction in muscular activity in the range of 10-20% in 60 out of 72 trials (i.e., 83%), while no effect related to swinging speed was recorded (speed variation was lower than 10% in 92% of the trials). In the remaining cases muscular activity increment, when statistically significant, was less than 10%. These results showed that the proposed algorithm reduced muscular effort during the most energetically demanding part of the movement (the extension of the knee against gravity) without perturbing the spatio-temporal characteristics of the task and making it particularly suitable for application in exoskeleton-assisted cyclic motions.
RESUMO
This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.
Assuntos
Teste de Esforço/instrumentação , Marcha/fisiologia , Robótica/instrumentação , Fenômenos Biomecânicos , Desenho de Equipamento , Quadril/fisiologia , Humanos , Joelho/fisiologia , Masculino , Torque , Adulto JovemRESUMO
In the design of wearable robots that strictly interact with the human body and, in general, in any robotics application that involves the human component, the possibility of having modular joints able to produce a viscoelastic behaviour is very useful to achieve an efficient and safe human-robot interaction and to give rise to emergent dynamical behaviors. In this paper we propose the design of a compact, passive, rotary viscoelastic joint for assistive wearable robotics applications. The system integrates two functionally distinct sub-modules: one to render a desired torsional stiffness profile and the other to provide a desired torsional damping. Concepts and design choices regarding the overall architecture and the single components are presented and discussed. A viscoelastic model of the system has been developed and the design of the joint is presented.
Assuntos
Articulações/fisiologia , Robótica/instrumentação , Robótica/métodos , Desenho de Equipamento , Humanos , Modelos TeóricosRESUMO
Non-anthropomorphic wearable robots (WRs) give good grounds for expecting advantageous performances over traditional anthropomorphic solutions from both the standpoints of ergonomics and of the dynamical interaction with the human body.