Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 166(2): 175-185, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329883

RESUMO

TMEM55B is first identified as phosphatidylinositol-4,5-P24-phosphatases (PtdIns-4,5-P24-phosphatases) that catalyse dephosphorylation of PtdIns-4,5-P2 to PtdIns-5-P. We demonstrate for the first time that TMEM55B is phosphorylated by Erk/MAPK and that this mechanism participates in regulation of lysosomal clustering. Exposure of RAW264.7 macrophages to various stimuli induces phosphorylation of TMEM55B on Ser76 and Ser169, sites corresponding to consensus sequences (PX(S/T)P) for phosphorylation by MAPK. Of these stimuli, Toll-like receptor ligands most strongly induce TMEM55B phosphorylation, and this is blocked by the MEK1/2 inhibitor U0126. However, phosphorylation does not impact intrinsic phosphatase activity of TMEM55B. TMEM55B has recently been implicated in starvation induced lysosomal translocation. Amino acid starvation induces perinuclear lamp1 clustering in RAW264.7 macrophages, which was attenuated by shRNA-mediated knock-down or CRISPR/Cas9-mediated knock-out of TMEM55B. Cells exposed to U0126 also exhibit attenuated lamp1 clustering. Overexpression of TMEM55B but not TMEM55A notably enhances lamp1 clustering, with TMEM55B mutants (lacking phosphorylation sites or mimicking the phosphorylated state) exhibiting lower and higher efficacies (respectively) than wild-type TMEM55B. Collectively, results suggest that phosphorylation of TMEM55B by Erk/MAPK impacts lysosomal dynamics.


Assuntos
Lisossomos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatases de Fosfoinositídeos/química , Fosfatases de Fosfoinositídeos/metabolismo , Animais , Camundongos , Fosforilação , Células RAW 264.7
2.
Genes Cells ; 24(5): 366-376, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851234

RESUMO

Lysophosphatidylinositol-acyltransferase-1 (LPIAT1) specifically catalyzes the transfer of arachidonoyl-CoA to lysophosphoinositides. LPIAT-/- mice have been shown to have severe defects in the brain and liver; however, the exact molecular mechanisms behind these conditions are not well understood. As immune cells have been implicated in liver inflammation based on disfunction of LPIAT1, we generated Raw264.7 macrophages deficient in LPIAT1, using shRNA and CRISPR/Cas9. The amount of C38:4 species in phosphoinositides, especially in PtdInsP2 , was remarkably decreased in these cells. Unlike in wild-type cells, LPIAT1-deficient cells showed prolonged oscillations of intracellular Ca2+ upon UDP stimulation, which is known to activate phospholipase Cß through the Gq-coupled P2Y6 receptor, even in the absence of extracellular Ca2+ . It is speculated that the prolonged Ca2+ response may be relevant to the increased risk of liver inflammation induced by LPIAT1 disfunction.


Assuntos
Aciltransferases/metabolismo , Sinalização do Cálcio , Aciltransferases/genética , Animais , Camundongos , Células RAW 264.7
3.
J Biochem ; 165(1): 75-84, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295876

RESUMO

PIKfyve phosphorylates PtdIns(3)P to PtdIns(3, 5)P2. One of the best characterized effector downstream of PtdIns(3, 5)P2 is a lysosomal Ca2+ channel, TRPML1. Although it has been reported that TRPML1 is involved in phagosome-lysosome fusion, the relevance of the Ca2+ channel in phagosome acidification has been denied. In this article, however, we demonstrated that the phagosome acidification was dependent on TRPML1. Based on the classical idea that Fluorescein isothiocyanate (FITC)-fluorescence is highly sensitive to acidic pH, we could estimate the phagosome acidification by time laps imaging. FITC-zymosan fluorescence that was engulfed by macrophages, decreased immediately after the uptake while the extinction of FITC-zymosan fluorescence was delayed in PIKfyve-deficient cells. The acidification arrest was completely rescued in the presence of Ca2+ ionophore A23187. Cells treated with a PIKfyve inhibitor, apilimod, also showed delayed phagosome acidification but were rescued by the overexpression of TRPML1. Additionally, TRPML1 agonist, ML-SA1 was effective to acidify the phagosome in PIKfyve-deficient cells. Another phenotype observed in PIKfyve-deficient cells is vacuole formation. Unexpectedly, enlarged vacuole formation in PIKfyve-deficient cells was not rescued by Ca2+ or over expression of TRPML1. It is likely that the acidification and vacuolation arrest is bifurcating downstream of PIKfyve.


Assuntos
Ácidos/metabolismo , Canais de Cálcio/metabolismo , Endossomos/metabolismo , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Vacúolos/metabolismo , Animais , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Fluoresceína-5-Isotiocianato/química , Fluorescência , Concentração de Íons de Hidrogênio , Ionóforos/administração & dosagem , Macrolídeos/farmacologia , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Células RAW 264.7 , Imagem com Lapso de Tempo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...