Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(38): 14150-14161, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37699525

RESUMO

Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.


Assuntos
Estresse Oxidativo , Oxigênio , Espécies Reativas de Oxigênio , Aerossóis , Sudeste dos Estados Unidos
2.
Chemistry ; 29(65): e202302181, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37658627

RESUMO

Supramolecular polymers are formed through nucleation (i. e., initiation) and polymerization processes, and kinetic control over the nucleation process has recently led to the realization of living supramolecular polymerization. Changing the viewpoint, herein we focus on controlling the polymerization process, which we expect to pave the way to further developments in controlled supramolecular polymerization. In our previous study, two-dimensional living supramolecular polymerization was used to produce supramolecular nanosheets with a controlled area; however, these had rough edges. In this study, the growth of the nanosheets was controlled by using a 'dummy' monomer to produce supramolecular nanosheets with smoothed edges.

3.
Nat Chem ; 15(7): 922-929, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264101

RESUMO

Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.

4.
Chemistry ; 29(39): e202301019, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126385

RESUMO

An amino-ene click reaction is a type of aza-Michael addition reaction that is congruent with click chemistry in terms of its reaction efficiency and rate under mild conditions. The amino-ene click reaction is increasingly recognized as a prominent synthetic tool to form C-N bonds in the context of organic materials chemistry and polymer chemistry. Herein, an unconventional amino-ene click reaction with negative activation enthalpies, in which an electron-deficient π-conjugated molecule, such as a naphthalenediimide, reacts with an amine faster at lower temperatures is reported. The detailed study of the reaction mechanism reveals that the amino-ene click reaction proceeds via a pre-equilibrium reaction, the key to which is the formation of a stable reaction intermediate due to the solvation and charge delocalization on the π-core. By optimizing the reaction conditions, it was demonstrated that the amino-ene click reaction proceeded faster at 273 K than at 347 K, which was easily observed visually.

5.
Chem Commun (Camb) ; 59(33): 4903-4906, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37000468

RESUMO

The facile synthesis of chromophores with near-infrared (NIR) absorption and emission is of particular interest due to their wide range of applications. Here we report a one-step synthesis of amino-functionalized perylenediimides exhibiting NIR absorption and emission via a catalyst-free amino-yne click reaction. We also demonstrate the post-modification of polyethylenimine by the click reaction, resulting in the formation of a polymeric NIR chromophore with an emission peak at 913 nm in the solid state.

6.
Chem Sci ; 14(4): 822-826, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755703

RESUMO

Herein, we present a simple design concept for a monomer that affords individually separated supramolecular polymer chains. Random introduction of alkyl chains with different lengths onto a monomer prevented its supramolecular polymers from bundling, permitting the preparation of concentrated solutions of the supramolecular polymer without gelation, precipitation, or crystallization. With such a solution in hand, we succeeded in fabricating self-standing films and threads consisting of supramolecular polymers.

7.
Anal Chem ; 95(6): 3371-3378, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719775

RESUMO

The family of atmospheric oxides of nitrogen, NOy (e.g., nitrogen oxides (NOx) + nitric acid (HNO3) + nitrous acid (HONO) + peroxyacetyl nitrate (PAN) + particulate nitrate (pNO3-) + other), have an influential role in atmospheric chemistry, climate, and the environment. The nitrogen (δ15N) and oxygen (δ18O and Δ17O) stable isotopes of NOy are novel tools for potentially tracking emission sources and quantifying oxidation chemistry. However, there is a lack of well-established methods, particularly for speciated gas-phase components of NOy, to accurately quantify δ15N, δ18O, and Δ17O. This work presents controlled laboratory experiments and complex chamber α-pinene/NOx oxidation experiments of a sampling apparatus constructed for the simultaneous capture of multiple NOy species for isotope analysis using a series of coated denuders, with a focus on nitrogen dioxide (NO2•). The laboratory tests indicate complete NO2• capture for the targeted concentration of 15 ppbv for at least 24 h collections at 10 liters per minute, with δ15N and δ18O precisions of ±1.3‰ and 1.0‰, respectively, and minimal (2.2% ± 0.1%) NO2• collection on upstream denuders utilized for the capture of HNO3 and other acidic gases. The multispecies NOy collection system showed excellent concentration correlations with online instrumentation for both HNO3 and NO2• and isotope reproducibility of ±1.7‰, ±1.8‰, and ±0.7‰ for δ15N, δ18O, and Δ17O, respectively, for replicate experiments and highly time-resolved collections. This work demonstrates a new method that can enable the simultaneous collection of HNO3 and NO2• for accurate quantification of concentration and isotopic composition.

8.
J Phys Chem A ; 127(4): 987-999, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36651914

RESUMO

Organic nitrates (ONs) can impact spatial distribution of reactive nitrogen species and ozone formation in the atmosphere. While photolysis of ONs is known to result in the release of NO2 back to the atmosphere, the photolysis rate constants and mechanisms of monoterpene-derived ONs (MT-ONs) have not been well constrained. We investigated the gas-phase photolysis of three synthetic ONs derived from α-pinene, ß-pinene, and d-limonene through chamber experiments. The measured photolysis rate constants ranged from (0.55 ± 0.10) × 10-5 to (2.3 ± 0.80) × 10-5 s-1 under chamber black lights. When extrapolated to solar spectral photon flux at a solar zenith angle of 28.14° in summer, the photolysis rate constants were in the range of (4.1 ± 1.4) × 10-5 to (14 ± 6.7) × 10-5 s-1 (corresponding to lifetimes of 2.0 ± 0.96 to 6.8 ± 2.4 h) and (1.7 ± 0.60) × 10-5 to (8.3 ± 4.0) ×10-5 s-1 (3.3 ± 1.6 to 17 ± 6.0 h lifetimes) by using wavelength-dependent and average quantum yields, respectively. Photolysis mechanisms were proposed based on major products detected during photolysis. A zero-dimensional box model was further employed to simulate the photolysis of α-pinene-derived ON under ambient conditions. We found that more than 99% of α-pinene-derived ON can be converted to inorganic nitrogen within 12 h of irradiation and ozone was formed correspondingly. Together, these findings show that photolysis is an important atmospheric sink for MT-ONs and highlight their role in NOx recycling and ozone chemistry.

9.
Macromol Rapid Commun ; 44(3): e2200666, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36189886

RESUMO

Topological polymers have attracted considerable attention owing to their unique chemical and physical properties. This study demonstrates the formation of novel supramolecular miktoarm star copolymers with a zinc phthalocyanine (ZnPc) core using metal-ligand coordination interactions. Various linear polymers with pyridyl end groups, poly(methyl methacrylate), poly(vinyl acetate) and poly(N-vinyl carbazole), are prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. This facilitates coordination to the ZnPc core of 4-armed star-shaped polystyrene prepared via atom-transfer radical polymerization (ATRP). Furthermore, the formation of a 1:1 complex of a ZnPc molecule and pyridyl group of the chain-transfer agent for RAFT is confirmed by absorption spectral studies and 1 H NMR spectroscopic analyses. The concept of supramolecular complexation can be extended to the preparation of AB4 -type supramolecular miktoarm star-shaped copolymers with functional cores.


Assuntos
Polímeros , Polimetil Metacrilato , Polimerização , Polímeros/química
10.
Nat Commun ; 13(1): 7883, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550126

RESUMO

Secondary organic aerosol (SOA) contributes significantly to ambient fine particulate matter that affects climate and human health. Monoterpenes represent an important class of biogenic volatile organic compounds (VOCs) and their oxidation by nitrate radicals poses a substantial source of SOA globally. Here, we investigate the formation and properties of SOA from nitrate radical oxidation of two common monoterpenes, α-pinene and limonene. When two monoterpenes are oxidized simultaneously, we observe a ~50% enhancement in the formation of SOA from α-pinene and a ~20% reduction in limonene SOA formation. The change in SOA yields is accompanied by pronounced changes in aerosol chemical composition and volatility. These non-linear effects are not observed in a sequential oxidation experiment. Our results highlight that unlike currently assumed in atmospheric models, the interaction of products formed from individual VOCs should be accounted for to accurately describe SOA formation and its climate and health impacts.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Limoneno , Nitratos/química , Monoterpenos/química , Material Particulado , Aerossóis/química
11.
Chem Commun (Camb) ; 58(51): 7196-7199, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35671101

RESUMO

We report a cooperative (i.e., nucleation-elongation) self-assembling process of a core-substituted naphthalenediimide induced by a catalyst-free amino-yne click reaction at 298 K. The self-assembling process was initiated immediately in the presence of nuclei (seeds). The combination of the click reaction and the seeded self-assembling process paves the way for precise control over supramolecular assemblies of electron-deficient π-systems.

12.
Chem Sci ; 13(15): 4413-4423, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35509456

RESUMO

Implementing chemical reactivity into synthetic supramolecular polymers based on π-conjugated molecules has been of great interest to create functional materials with spatiotemporal dynamic properties. However, the development of an in situ chemical reaction within supramolecular polymers is still in its infancy, because one needs to design optimal π-conjugated monomers having excellent reactivity under mild conditions possibly without byproducts or a catalyst. Herein we report the synthesis of a supramolecular polymer based on ethynyl core-substituted naphthalenediimide (S-NDI2) molecules that react with various amines quantitatively in a nonpolar solvent, without a catalyst, at 298 K. Most interestingly, the in situ reaction of the S-NDI2 supramolecular polymer with a linear aliphatic diamine proceeded much faster than the homogeneous reaction of a monomeric naphthalenediimide with the same diamine, affording diamine-linked S-NDI2 oligomers and polymers. The acceleration of in situ hydroamination was presumably due to rapid intra-supramolecular cross-linking between ethynyl and amino groups fixed in close proximity within the supramolecular polymer. Such intra-supramolecular cross-linking did not occur efficiently with an incompatible diamine. The systematic kinetic studies of in situ catalyst-free hydroamination within supramolecular polymers provide us with a useful, facile and versatile tool kit for designing dynamic supramolecular polymeric materials based on electron-deficient π-conjugated monomers.

13.
RSC Adv ; 12(6): 3372-3379, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425372

RESUMO

Multilayered films prepared from graphene oxide (GO) subjected to a single oxidation process (1GO) can actuate in response to moisture, whereas those prepared from GO subjected to two oxidation processes (2GO) lose this ability. To elucidate the origin of this difference, the structures and properties of various multilayered films and their contents were analyzed. According to atomic force microscopy images, the lateral size of the GO monolayer in 2GO (2.0 ± 0.4 µm) was smaller than that in 1GO (3.2 ± 0.4 µm), although this size difference did not affect actuation. Scanning electron microscopy images of the cross sections of both films showed fine multilayered structures and X-ray diffraction measurements showed the moisture sensitive reversible change in the interlayer distances for both films. Both films adsorbed 30 wt% moisture in 60 s with different water contents at the bottom moist sides and top air sides of the films. Nanoindentation experiments showed hardness values (1GO: 156 ± 67 MPa; 2GO: 189 ± 97 MPa) and elastic modulus values (1GO: 4.7 ± 1.7 GPa; 2GO: 5.8 ± 3.2 GPa) typical of GO, with no substantial difference between the films. On the contrary, the 1GO film bent when subjected to a weight equal to its own weight, whereas the 2GO film did not. Such differences in the macroscopic hardness of GO films can affect their moisture-induced actuation ability.

14.
Environ Sci Technol ; 55(21): 14595-14606, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668375

RESUMO

The partition of gas-phase organic nitrates (ONs) to aerosols and subsequent hydrolysis are regarded as important loss mechanisms for ON species. However, the hydrolysis mechanisms and the major factors controlling the hydrolysis lifetime are not fully understood. In this work, we synthesized seven monoterpene-derived ONs and systematically investigated their hydrolysis in bulk solutions at different pH values. The hydrolysis lifetimes ranged from 12.9 min to 8.5 h for allylic primary ON and tertiary ONs, but secondary ONs were stable at neutral pH. The alkyl substitution numbers, functional groups, and carbon skeletons were three important factors controlling hydrolysis rates. Tertiary and secondary ONs were found to hydrolyze via the acid-catalyzed unimolecular (SN1) mechanism, while a competition of SN1 and bimolecular (SN2) mechanisms accounted for the hydrolysis of primary ONs. The consistency of experimental and theoretical hydrolysis rates calculated by density functional theory further supported the proposed mechanisms. Reversible reactions including hydrolysis and nitration were first reported to explain the hydrolysis of ONs, highlighting the possibility that particulate nitric acid can participate in nitration to generate new nitrogen-containing compounds. These findings demonstrate that ON hydrolysis is a complex reaction that proceeds via different mechanisms and is controlled by various parameters.


Assuntos
Monoterpenos , Nitratos , Ácidos , Aerossóis , Hidrólise
15.
Sci Technol Adv Mater ; 22(1): 522-531, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34220340

RESUMO

We reports a novel thermally enhanced drug release system synthesized via a dynamic Diels-Alder (DA) reaction to develop chemotherapy for pancreatic cancer. The anticancer prodrug was designed by tethering gemcitabine (GEM) to poly(furfuryl methacrylate) (PFMA) via N-(3-maleimidopropionyloxy)succinimide as a linker by DA reaction (PFMA-L-GEM). The conversion rate of the DA reaction was found to be approximately 60% at room temperature for 120 h. The reversible deconstruction of the DA covalent bond in retro Diels-Alder (rDA) reaction was confirmed by proton nuclear magnetic resonance, and the reaction was significantly accelerated at 90 °C. A PFMA-LGEM film containing magnetic nanoparticles (MNPs) was prepared for thermally enhanced release of the drug via the rDA reaction. Drug release was initiated by heating MNPs by alternating magnetic field. This enables local heating within the film above the rDA reaction temperature while maintaining a constant surrounding medium temperature. The MNPs/PFMA-L-GEM film decreased the viability of pancreatic cancer cells by 49% over 24 h. Our results suggest that DA/rDA-based thermally enhanced drug release systems can serve as a local drug release platform and deliver the target drug within locally heated tissue, thereby improving the therapeutic efficiency and overcoming the side effects of conventional drugs used to treat pancreatic cancer.

16.
J Phys Chem Lett ; : 5758-5764, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133185

RESUMO

Bismuth-based zero-dimensional perovskites garner high research interest because of their advantages, such as excellent moisture stability and lower toxicity in comparison to lead-based congeners. However, the wide optical bandgap (>2 eV) and poor photoconductivity of these materials are the bottlenecks for their optoelectronic applications. Herein, we report a combined experimental and theoretical study of the structural features and optoelectronic properties of two novel and stable zero-dimensional bismuth perovskites: (biphenyl bis(methylammonium))1.5BiI6·2H2O (BPBI) and (naphthalene diimide bis(ethylammonium))1.5BiI6·2H2O (NDBI). NDBI features a remarkably narrower bandgap (1.82 eV) than BPBI (2.06 eV) because of the significant orbital contribution of self-assembled naphthalene diimide cations at the band edges of NDBI. Further, the FP-TRMC analysis revealed that the photoconductivity of NDBI is about 3.7-fold greater than that of BPBI. DFT calculations showed that the enhanced photoconductivity in NDBI arises from its type-IIa band alignment, whereas type-Ib alignment was seen in BPBI.

17.
Angew Chem Int Ed Engl ; 60(30): 16466-16471, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33905168

RESUMO

Elucidation of dynamics of molecular rotational motion is an essential part and challenging area of research. We demonstrate reversible diastereomeric interconversion of a molecular rotor composed of overcrowded butterfly-shape alkene (FDF). Its inherent dual rotatory motion (two rotors, one stator) with interconversion between two diastereomers, chiral trans-FDF and meso cis-FDF forms, has been examined in detail upon varying temperatures and solvents. The free energy profile of 180° revolution of one rotor part has a bimodal shape with unevenly positioned maxima (transition states). FDF in aromatic solvents adopts preferentially meso cis-conformation, while in non-aromatic solvents a chiral trans-conformation is more abundant owing to the solvent interactions with peripheral hexyl chains (solvophobic effect). Moderate correlations between the trans-FDF/cis-FDF ratio and solvent parameters, such as refractive index, polarizability, and viscosity were found.

18.
Environ Sci Technol ; 55(10): 6688-6699, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33902278

RESUMO

While carboxylic acids are important components in both particle and gas phases in the atmosphere, their sources and partitioning are not fully understood. In this study, we present real-time measurements of both particle- and gas-phase concentrations for five of the most common and abundant low-molecular-weight carboxylic acids (LMWCA) in a rural region in the southeastern U.S. in Fall 2016. Through comparison with secondary organic aerosol (SOA) tracers, we find that isoprene was the most important local precursor for all five LMWCA but via different pathways. We propose that monocarboxylic acids (formic and acetic acids) were mainly formed through gas-phase photochemical reactions, while dicarboxylic acids (oxalic, malonic, and succinic acids) were predominantly from aqueous processing. Unexpectedly high concentrations of particle-phase formic and acetic acids (in the form of formate and acetate, respectively) were observed and likely the components of long-range transport organic aerosol (OA), decoupled from their gas-phase counterparts. In addition, an extraordinarily strong correlation (R2 = 0.90) was observed between a particulate LMWCA and aged SOA, which we tentatively attribute to boundary layer dynamics.


Assuntos
Atmosfera , Ácidos Carboxílicos , Aerossóis , Sudeste dos Estados Unidos
19.
Indoor Air ; 31(5): 1484-1494, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33647175

RESUMO

Air quality in indoor environments can have significant impacts on people's health, comfort, and productivity. Particulate matter (PM; also referred to as aerosols) is an important type of air pollutant, and exposure to outdoor PM has been associated with a variety of diseases. In addition, there is increasing recognition and concern of airborne transmission of viruses, including severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2), especially in indoor environments. Despite its importance, indoor PM data during the COVID-19 pandemic are scarce. In this work, we measured and compared particle number and mass concentrations in aircraft cabins during commercial flights with various indoor environments in Atlanta, GA, during July 2020, including retail stores, grocery stores, restaurants, offices, transportation, and homes. Restaurants had the highest particle number and mass concentrations, dominated by cooking emissions, while in-flight aircraft cabins had the lowest observed concentrations out of all surveyed spaces.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar , Material Particulado/análise , Aeronaves/estatística & dados numéricos , COVID-19/epidemiologia , Culinária , Monitoramento Ambiental , Habitação/estatística & dados numéricos , Humanos , Tamanho da Partícula , Restaurantes/estatística & dados numéricos , SARS-CoV-2 , Supermercados
20.
J Am Chem Soc ; 143(8): 3238-3244, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33600719

RESUMO

We report herein the solution and solid-state studies of conformationally flexible multidecker naphthalenediimides (NDIs) in which the chromophoric NDI units intramolecularly assemble into a series of discrete π-stacks. The X-ray crystallography reveals the existence of exclusively all-syn NDIs orientations in lower congeners while all-anti in a higher congener, suggesting short- to long-range π···π interactions throughout the slipped πNDI chromophoric array. The UV/vis and fluorescence spectra evaluate the discrete π-stacks by remarkable optical changes upon cooling in solution. Furthermore, we carried out a systematic electrochemical investigation to gain an insight into redox properties of the long-range π-stacked structures. The higher congener (5NDI) shows a ten-electron reversible reduction process in a small working potential window (∼0.8 V). To our knowledge, this is an unusual observation in an organic molecular system to undergo up to ten-electron reduction. These results pave the way to design multidecker π-stacks in which structural control with specific electronic properties would be engineered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...