Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139471, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692241

RESUMO

To compare the bioavailability of protein-binding zinc, we investigated the impact of baking on the structure of zinc-binding proteins. The results showed that zinc-binding proteins enriched in zinc with relative molecular weights distributed at 6 kDa and 3 kDa. Protein-binding zinc is predisposed to separate from proteins' interiors and converge on proteins' surface after being baked, and its structure tends to be crystalline. Especially -COO, -C-O, and -C-N played vital roles in the sites of zinc-binding proteins. However, baking did not affect protein-binding zinc's bioavailability which was superior to that of ZnSO4 and C12H22O14Zn. They were digested in the intestine, zinc-binding complexes that were easily transported and uptaken by Caco-2 cells, with transport and uptake rates as high as 62.15% and 15.85%. Consequently, baking can alter the conformation of zinc-binding proteins without any impact on protein-binding zinc's bioavailability which is superior to that of ZnSO4 and C12H22O14Zn.


Assuntos
Disponibilidade Biológica , Ostreidae , Zinco , Humanos , Células CACO-2 , Animais , Zinco/metabolismo , Zinco/química , Ostreidae/química , Ostreidae/metabolismo , Culinária , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Temperatura Alta , Ligação Proteica , Frutos do Mar/análise
2.
Food Res Int ; 165: 112484, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869497

RESUMO

The current systematic study sought to examine the potential use of three Good's buffers (MES, MOPS and HEPES) in inhibiting myofibrillar protein (MFP) denaturation induced by acidity changes. The highest degree of acidity variation was found in the center and bottom of large bottles due to the freeze-concentration effect. Good's buffer tended to basify during freezing, and it could prevent the crystallization of sodium phosphate (Na-P) buffer. Acidification upon freezing Na-P disrupted the natural conformation of MFP and induced the formation of large proteins aggregates with tight packing. The 15 mM MES, 20 mM MOPS, and 30 mM HEPES were respectively added to neutralize the strong acidity drop induced by freezing 20 mM Na-P, and all of them significantly improved the stability of the MFP conformation (P < 0.05). This work is not only critical to meet the growing demand for protein, but also groundbreaking for broadening the applicability of Good's buffers in the food industry.


Assuntos
Congelamento , HEPES , Conformação Proteica , Cristalização , Desnaturação Proteica
3.
Food Chem ; 397: 133748, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905618

RESUMO

To investigate the regulation mechanism of CO2 (0% CO2, 20% CO2, 60% CO2, and 100% CO2) on the spoilage potential of S. putrefaciens target to flavour compounds, the metabolic activity of S. putrefaciens and the changes in flavour compounds extracted from inoculated large yellow croakers were evaluated. Results showed that CO2 significantly reduced biofilm formation capacity and suppressed synthesis of intracellular adenosine triphosphate (ATP). The production of unpleasant flavour compounds, such as total volatile basic nitrogen (TVB-N), trimethylamine (TMA), inosine (HxR), hypoxanthine (Hx), histidine, lysine, histamine, putrescine, 1-octen-3-ol, hexanal and benzaldehyde, was inhibited by CO2. The hydrolysis and oxidation of lipid in CO2-treated samples were alleviated and unsaturated fatty acids (UFAs) were in a higher percentage. In summary, CO2 efficiently reduced the spoilage potential of S. putrefaciens and contributed to better flavour quality of samples during 4 °C storage. A more effective inhibition by 100% CO2 was observed.


Assuntos
Perciformes , Shewanella putrefaciens , Animais , Dióxido de Carbono , Aromatizantes , Putrescina
4.
J Food Sci ; 87(1): 52-67, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34897680

RESUMO

Ultrasonic treatment (UT) was used to thaw large yellow croaker in this study, and the effect of various ultrasonic power levels on the quality of large yellow croaker was evaluated after thawing. The effects of ultrasonic on water holding capacity (WHC), moisture distribution, thiobarbituric acid-reactive substance (TBARs), total volatile base nitrogen (TVB-N), ATP degradation (related to K value), surface color change, free amino acid (FAA) content, total sulfhydryl group (SH) content, Fourier transform infrared absorption spectra (FT-IR), fluorescence emission spectra, and microscopic observations of large yellow croaker myofibrillar proteins were investigated. The thawing times of the control sample, 200UT, 240UT, 280UT, and 320UT samples were 1750, 1190, 810, 580, and 570 s, respectively, which indicated that ultrasonic radiation could improve thawing efficiency. Additionally, ultrasonic thawing maintained better freshness and color and inhibited lipid oxidation. Compared with fresh samples, the TVB-N of large yellow croaker thawed by ultrasonication increased by 12.68%, and the K value increased by 0.9%. The 240UT sample had tightly arranged myofibrils and fewer changes in the structures of myogenic fibrillar proteins than the fresh samples, and the SH content of 240UT was decreased by 8.17%. Use of excessive ultrasonic power (320 W) damaged the protein microstructure and the microstructure of large yellow croaker. In conclusion, sample 240UT maintained the quality of large yellow croaker better with minimal damage, which is recommended for rapid thawing. PRACTICAL APPLICATION: Ultrasonic waves improve the thawing efficiency of large yellow croaker and maintain the freshness and color of the fish. According to results, sample 240UT exhibited slight changes in the structure of the myofibril protein, but excessive ultrasonic power destroyed the microstructure and protein structure. Appropriate ultrasonic treatment to the thawing of fish has good prospects.


Assuntos
Perciformes , Ultrassom , Animais , Peixes , Congelamento , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Biol Macromol ; 194: 499-509, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822836

RESUMO

Frozen aquatic products undergo unavoidable quality changes owing to temperature fluctuations during frozen storage and distribution. This study investigated the effects of 1% cellobiose (CB), and 0.5 and 1% carboxylated cellulose nanofibers (CNF) on ice crystal growth and recrystallization of frozen large yellow croaker fillets exposed to temperature fluctuations. Denser and more uniformly distributed ice crystals were observed in the CB- and CNF-treated samples than in the water-treated samples. Furthermore, the addition of CB and CNF suppressed the conversion of bound water to frozen water in the samples during temperature fluctuation cycles, played a positive role in fixing the ionic and hydrogen bonds that stabilize the protein structure, limited the conformational transition from α-helix to ß-sheet, and improved protein thermal stability. Based on turbidity, zeta potential, and confocal laser scanning microscopy (CLSM) analyses, the presence of CB and CNF restricted the protein aggregation. Compared with CB, CNF molecules with abundant carboxyl functional groups and longer morphology exhibited better cryoprotective effects. Moreover, the fillets were more improved protected from mechanical damage induced by large ice crystals at a higher CNF concentration. This study reveals the potential of CB and CNF as novel cryoprotectants.


Assuntos
Crioprotetores/farmacologia , Conservação de Alimentos/métodos , Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Perciformes/metabolismo , Animais , Ácidos Carboxílicos/farmacologia , Celobiose/farmacologia , Celulose/farmacologia , Nanofibras , Temperatura
6.
Food Chem ; 373(Pt B): 131511, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34763934

RESUMO

The aim of this study was to investigate myofibrillar protein (MFP) denaturation induced by pH changes during freeze-thaw (FT) cycles, and to propose an effective mitigation strategy. Owing to the selective crystallization of Na2HPO4·12H2O and the consequent pH change, a pH change of 3.32 units was observed when the MFP solution were frozen. The surface hydrophobicity, particle size and confocal laser scanning microscopy showed that the protein molecules gradually unfolded and formed larger protein aggregation as the number of FT cycles increases. Additionally, protein degradation, secondary and tertiary structure alterations suggested that the FT cycle could disrupt structural integrity. The addition of cellobiose could maximize the inhibition of pH changes (decrease of ∼0.62 unit), no Na2HPO4·12H2O crystallization was observed by X-ray diffraction. Cellobiose could minimize FT damage to myofibrillar protein, which was closest to the control. Thus, cellobiose can be used as a new and effective cryoprotectant.


Assuntos
Celobiose , Crioprotetores , Congelamento , Concentração de Íons de Hidrogênio , Desnaturação Proteica
7.
Foods ; 10(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917293

RESUMO

This study aimed to explore the effect of dehydration on the water migrating property and protein changes of large yellow croaker during frozen storage. A freeze-dryer was used to accelerate experiments, which was isolated from oxygen and excluded the effects of protein oxidation. After dehydration time (3, 9, 18, and 30 h) for both fast- and slow-freezing samples, the results showed that the ice sublimation of samples containing small ice crystals was faster than that of samples containing large ice crystals in the early stages of dehydration, but in the latest stage, there was an opposite trend. The results indicated that dehydration reduced the water freedom degrees and water-protein interaction. At the same time, dehydration had a significant effect on protein secondary and tertiary structures. The significant increase in surface hydrophobicity and particle size indicated that dehydration exacerbated myofibrillar protein aggregation. The ΔH1 values (from 1.275 to 0.834 J/g for slow-freezing group and from 1.129 to 0.855 J/g for fast-freezing group) decreased gradually as the dehydration time extended, indicating the decrease in protein thermal stability. Additionally, significant protein degradation occurred when the water content of the sample decreased to a certain level. This study showed that ice crystal size had an important effect on the rate of ice sublimation, and the occurrence of dehydration during frozen storage accelerated the water loss and the decrease in protein stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...