Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(4): 1047-1056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095682

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and reliable fingerprinting technique. However, its analytical capability is closely related to the quality of a SERS substrate used for the analysis. In particular, conventional colloidal substrates possess disadvantages in terms of controllability, stability, and reproducibility, which limit their application. In order to address these issues, a simple, cost-effective, and efficient SERS substrate based on silver nanoparticle arrays (Ag NPAs) and sandpaper-molded polydimethylsiloxane (SMP) was proposed in this work. Successfully prepared via template lithography and liquid-liquid interface self-assembly (LLISA), the substrate can be applied to the specific detection of organic dyes in the environment. The substrate exhibited good SERS performance, and the limit of detection (LOD) of rhodamine 6G (R6G) was shown to be 10-7 M under the optimal conditions (1000 grit sandpaper) with a relative standard deviation (RSD) of 7.76%. Moreover, the SERS signal intensity was maintained at 60% of the initial intensity after the substrate was stored for 30 days. In addition, the Ag NPAs/SMP SERS substrate was also employed to detect crystal violet (CV) and methylene blue (MB) with the LODs of 10-6 M and 10-7 M, respectively. In summary, the Ag NPAs/SMP SERS substrate prepared in this study has great potential for the detection of organic dyes in ecological environments.

2.
ACS Omega ; 8(16): 14541-14548, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125120

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a precise and noninvasive analytical technique to identify vibrational fingerprints of trace analytes with sensitivity down to the single-molecule level. However, substrates can influence this capability, and current SERS techniques lack uniform, reproducible, and stable substrates to control plasma hot spots over a wide spectral range. Herein, we demonstrate a flexible SERS substrate via longitudinal stretching of a polydimethylsiloxane (PDMS) film. This substrate, after stretching and shrinking, exhibits an irregular wrinkled structure with abundant gaps and grooves that function as hot spots, thereby improving the hydrophobic properties of the material. To investigate the enhancement effect of Raman signals, silver nanoparticles (AgNPs) were mixed with Rhodamine 6G (R6G) solution, and the obtained blend was dropped onto the PDMS film to form a coffee ring pattern. According to the results, the hydrophobicity of the substrate increases with the degree of PDMS stretching, achieving the optimal level at 150% stretching. Moreover, the increase in hydrophobicity makes the measured molecules more aggregated, which enhances the Raman signal. The stretching and shrinkage of the PDMS film lead to a much higher density of nanogaps among nanoparticles and nanogrooves, which serve as multiple hot spots. Being highly localized regions of intense local fields, these hot spots make a significant contribution to SERS performance, improving the sensitivity and reproducibility of the method. In particular, the relative standard deviation (RSD) was found to be 2.5544%, and the detection limit was 1 × 10-7 M. Therefore, SERS using stretchable and flexible micro-nano substrates is a promising way for detecting dyes in wastewater.

3.
ACS Appl Mater Interfaces ; 14(30): 34470-34479, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867518

RESUMO

DNA nanostructure-based responsive drug delivery has become an increasingly potent method in cancer therapy. However, a variety of important cancer biomarkers have not been explored in searching of new and efficient targeted delivery systems. Uracil degradation glycosylase and human apurinic/apyrimidinic endonuclease are significantly more active in cancer cells. Here, we developed uracil-modified DNA nanotubes that can deliver drugs to tumor cells through an enzyme-induced disassembly process. Although the reaction of these enzymes on their natural DNA substrates has been established, their reactivity on self-assembled nanostructures of nucleic acids is not well understood. We leveraged molecular dynamic simulation based on coarse-grained model to forecast the enzyme reactivity on different DNA designs. The experimental data are highly consistent with the simulation results. It is the first example of molecule simulation being used to guide the design of enzyme-responsive DNA nano-delivery systems. Importantly, we found that the efficiency of drug release from the nanotubes can be regulated by tuning the positions of uracil modification. The DNA nanotubes equipped with cancer-specific aptamer AS1411 are used to deliver doxorubicin to tumor-bearing mice not only effectively inhibiting tumor growth but also protecting major organs from drug-caused damage. We believe that this work provides new knowledge on and insights into future design of enzyme-responsive DNA-based nanocarriers for drug delivery.


Assuntos
Nanotubos , Uracila-DNA Glicosidase , Animais , DNA/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Liberação Controlada de Fármacos , Humanos , Camundongos , Uracila/metabolismo
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117472, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31437762

RESUMO

A blue emission glutathione stabilized Au nanoclusters prepared by an Au/Histidine complex with ligand-exchanges method was used for sensing of copper ions. We found that the glutathione stabilized Au NCs which has fluorescence emission hundred times higher than the Au/Histidine complex and has a highly selective fluorescence quenching response to copper ion. Other common metal ions, such as mercury, lead, iron and zinc, which could obviously quench or enhance the fluorescence of Au/Histidine complex, do not interfere the sensing of copper using glutathione stabilized Au nanocluster. The possible quenching mechanism and the dynamic quenching process for copper detection were also discussed. The results indicated that copper in the range from 0.5 to 300.0µM could be linearly detected and the detection could be finished quickly in 5min. A visual detection method for copper ion that may be used to fast warn copper pollution in waters by naked eyes observation was also be developed using the glutathione stabilized Au NCs probe.

5.
Mater Sci Eng C Mater Biol Appl ; 92: 657-662, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184792

RESUMO

Assembly of anisotropic nanoparticles which need well controlling of assembly direction and spatial arrangement is more interesting than one-dimensional nanoparticles assemblies. As confirmed by observing of transmission electron microscopy images and analysis of plasmon resonance spectrum transformations, we found that silver triangular nanoplates (TNPs) without further modification could be face-to-face assembled by citrate. The face-to-face assembly of silver TNPs could be disassembled quickly by heating at a wide temperature range from 30 to 80 °C. In this process, an obvious localized surface plasmon resonance (LSPR) peak shift and a color change of solution from pink to purple could be observed. Moreover, the disassembled silver TNPs suspension is very stable that no significant peak shift of silver TNPs spectrum was observed in 8 h after removing of silver TNPs from a hearing area. Therefore, we fabricated an irreversible temperature indicator by measuring the relationship between the shift of LSPR peak and heating temperature, and by watching the color change of the solution in a certain environment. The irreversible temperature indicator has potential to develop a temperature label for revealing temperature history of a thermosensitive product which cannot expose to excessive temperature.


Assuntos
Ácido Cítrico/química , Nanopartículas Metálicas/química , Prata/química , Ressonância de Plasmônio de Superfície , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...