Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 183, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902758

RESUMO

BACKGROUND: Chelerythrine is an important alkaloid used in agriculture and medicine. However, its structural complexity and low abundance in nature hampers either bulk chemical synthesis or extraction from plants. Here, we reconstructed and optimized the complete biosynthesis pathway for chelerythrine from (S)-reticuline in Saccharomyces cerevisiae using genetic reprogramming. RESULTS: The first-generation strain Z4 capable of producing chelerythrine was obtained via heterologous expression of seven plant-derived enzymes (McoBBE, TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, and PsCPR) in S. cerevisiae W303-1 A. When this strain was cultured in the synthetic complete (SC) medium supplemented with 100 µM of (S)-reticuline for 10 days, it produced up to 0.34 µg/L chelerythrine. Furthermore, efficient metabolic engineering was performed by integrating multiple-copy rate-limiting genes (TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, PsCPR, INO2, and AtATR1), tailoring the heme and NADPH engineering, and engineering product trafficking by heterologous expression of MtABCG10 to enhance the metabolic flux of chelerythrine biosynthesis, leading to a nearly 900-fold increase in chelerythrine production. Combined with the cultivation process, chelerythrine was obtained at a titer of 12.61 mg per liter in a 0.5 L bioreactor, which is over 37,000-fold higher than that of the first-generation recombinant strain. CONCLUSIONS: This is the first heterologous reconstruction of the plant-derived pathway to produce chelerythrine in a yeast cell factory. Applying a combinatorial engineering strategy has significantly improved the chelerythrine yield in yeast and is a promising approach for synthesizing functional products using a microbial cell factory. This achievement underscores the potential of metabolic engineering and synthetic biology in revolutionizing natural product biosynthesis.


Assuntos
Benzofenantridinas , Engenharia Metabólica , Saccharomyces cerevisiae , Engenharia Metabólica/métodos , Benzofenantridinas/metabolismo , Benzofenantridinas/biossíntese , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vias Biossintéticas
2.
Biotechnol Biofuels Bioprod ; 16(1): 191, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072928

RESUMO

BACKGROUND: While representing a model bacterium and one of the most used chassis in biomanufacturing, performance of Escherichia coli is often limited by severe stresses. A super-robust E. coli chassis that could efficiently tolerant multiple severe stresses is thus highly desirable. Sterols represent a featured composition that distinguishes eukaryotes from bacteria and all archaea, and play a critical role in maintaining the membrane integrity of eukaryotes. All sterols found in nature are directly synthesized from (S)-2,3-oxidosqualene. However, in E. coli, (S)-2,3-oxidosqualene is not present. RESULTS: In this study, we sought to introduce (S)-2,3-oxidosqualene into E. coli. By mining and recruiting heterologous enzymes and activation of endogenous pathway, the ability of E. coli to synthesize (S)-2,3-oxidosqualene was demonstrated. Further analysis revealed that this non-native chemical confers E. coli with a robust and stable cell membrane, consistent with a figurative analogy of wearing an "Iron Man's armor"-like suit. The obtained Iron Man E. coli (IME) exhibited improved tolerance to multiple severe stresses, including high temperature, low pH, high salt, high sugar and reactive oxygen species (ROS). In particular, the IME strain shifted its optimal growth temperature from 37 °C to 42-45 °C, which represents the most heat-resistant E. coli to the best of our knowledge. Intriguingly, this non-native chemical also improved E. coli tolerance to a variety of toxic feedstocks, inhibitory products, as well as elevated synthetic capacities of inhibitory chemicals (e.g., 3-hydroxypropionate and fatty acids) due to improved products tolerance. More importantly, the IME strain was effectively inhibited by the most commonly used antibiotics and showed no undesirable drug resistance. CONCLUSIONS: Introduction of the non-native (S)-2,3-oxidosqualene membrane lipid enabled E. coli to improve tolerance to various stresses. This study demonstrated the effectiveness of introducing eukaryotes-featured compound into bacteria for enhancing overall tolerance and chemical production.

3.
Biotechnol Adv ; 64: 108119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36764336

RESUMO

Metabolic engineering exploits manipulation of catalytic and regulatory elements to improve a specific function of the host cell, often the synthesis of interesting chemicals. Although naturally occurring pathways are significant resources for metabolic engineering, these pathways are frequently inefficient and suffer from a series of inherent drawbacks. Designing artificial pathways in a rational manner provides a promising alternative for chemicals production. However, the entry barrier of designing artificial pathway is relatively high, which requires researchers a comprehensive and deep understanding of physical, chemical and biological principles. On the other hand, the designed artificial pathways frequently suffer from low efficiencies, which impair their further applications in host cells. Here, we illustrate the concept and basic workflow of retrobiosynthesis in designing artificial pathways, as well as the most currently used methods including the knowledge- and computer-based approaches. Then, we discuss how to obtain desired enzymes for novel biochemistries, and how to trim the initially designed artificial pathways for further improving their functionalities. Finally, we summarize the current applications of artificial pathways from feedstocks utilization to various products synthesis, as well as our future perspectives on designing artificial pathways.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Catálise
4.
Proc Natl Acad Sci U S A ; 116(26): 12810-12815, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186357

RESUMO

The more than 50,000 isoprenoids found in nature are all derived from the 5-carbon diphosphates isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Natively, IPP and DMAPP are generated by the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways, which have been engineered to produce compounds with numerous applications. However, as these pathways are inherently constrained by carbon, energy inefficiencies, and their roles in native metabolism, engineering for isoprenoid biosynthesis at high flux, titer, and yield remains a challenge. To overcome these limitations, here we develop an alternative synthetic pathway termed the isoprenoid alcohol (IPA) pathway that centers around the synthesis and subsequent phosphorylation of IPAs. We first established a lower IPA pathway for the conversion of IPAs to isoprenoid pyrophosphate intermediates that enabled the production of greater than 2 g/L geraniol from prenol as well as limonene, farnesol, diaponeurosporene, and lycopene. We then designed upper IPA pathways for the generation of (iso)prenol from central carbon metabolites with the development of a route to prenol enabling its synthesis at more than 2 g/L. Using prenol as the linking intermediate further facilitated an integrated IPA pathway that resulted in the production of nearly 0.6 g/L total monoterpenoids from glycerol as the sole carbon source. The IPA pathway provides an alternative route to isoprenoids that is more energy efficient than native pathways and can serve as a platform for targeting a repertoire of isoprenoid compounds with application as high-value pharmaceuticals, commodity chemicals, and fuels.


Assuntos
Terpenos/síntese química , Monoterpenos Acíclicos/química , Biocatálise , Glicerol/química , Hemiterpenos/química , Pentanóis/química , Biologia Sintética
5.
ACS Synth Biol ; 7(8): 1886-1896, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29976061

RESUMO

Type III polyketide synthases (PKS IIIs) contribute to the synthesis of many economically important natural products, most of which are currently produced by direct extraction from plants or through chemical synthesis. Olivetolic acid (OLA) is a plant secondary metabolite sourced from PKS III catalysis, which along with its prenylated derivatives has various pharmacological activities. To demonstrate the potential for microbial cell factories to circumvent limitations of plant extraction or chemical synthesis for OLA, here we utilize a synthetic approach to engineer Escherichia coli for the production of OLA. In vitro characterization of polyketide synthase and cyclase enzymes, OLA synthase and OLA cyclase, respectively, validated their requirement as enzymatic components of the OLA pathway and confirmed the ability for these eukaryotic enzymes to be functionally expressed in E. coli. This served as a platform for the combinatorial expression of these enzymes with auxiliary enzymes aimed at increasing the supply of hexanoyl-CoA and malonyl-CoA as starting and extender units, respectively. Through combining OLA synthase and OLA cyclase expression with the required modules of a ß-oxidation reversal for hexanoyl-CoA generation, we demonstrate the in vivo synthesis of olivetolic acid from a single carbon source. The integration of additional auxiliary enzymes to increase hexanoyl-CoA and malonyl-CoA, along with evaluation of varying fermentation conditions enabled the synthesis of 80 mg/L OLA. This is the first report of OLA production in E. coli, adding a new example to the repertoire of valuable compounds synthesized in this industrial workhorse.


Assuntos
Escherichia coli/metabolismo , Salicilatos/metabolismo , Escherichia coli/enzimologia , Policetídeo Sintases/metabolismo , Biologia Sintética
6.
Biotechnol Biofuels ; 11: 87, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619083

RESUMO

BACKGROUND: As a versatile platform chemical, construction of microbial catalysts for free octanoic acid production from biorenewable feedstocks is a promising alternative to existing petroleum-based methods. However, the bio-production strategy has been restricted by the low capacity of E. coli inherent fatty acid biosynthesis. In this study, a combination of integrated computational and experimental approach was performed to manipulate the E. coli existing metabolic network, with the objective of improving bio-octanoic acid production. RESULTS: First, a customized OptForce methodology was run to predict a set of four genetic interventions required for production of octanoic acid at 90% of the theoretical yield. Subsequently, all the ten candidate proteins associated with the predicted interventions were regulated individually, as well as in contrast to the combination of interventions as suggested by the OptForce strategy. Among these enzymes, increased production of 3-hydroxy-acyl-ACP dehydratase (FabZ) resulted in the highest increase (+ 45%) in octanoic acid titer. But importantly, the combinatorial application of FabZ with the other interventions as suggested by OptForce further improved octanoic acid production, resulting in a high octanoic acid-producing E. coli strain +fabZ ΔfadE ΔfumAC ΔackA (TE10) (+ 61%). Optimization of TE10 expression, medium pH, and C:N ratio resulted in the identified strain producing 500 mg/L of C8 and 805 mg/L of total FAs, an 82 and 155% increase relative to wild-type MG1655 (TE10) in shake flasks. The best engineered strain produced with high selectivity (> 70%) and extracellularly (> 90%) up to 1 g/L free octanoic acid in minimal medium fed-batch culture. CONCLUSIONS: This work demonstrates the effectiveness of integration of computational strain design and experimental characterization as a starting point in rewiring metabolism for octanoic acid production. This result in conjunction with the results of other studies using OptForce in strain design demonstrates that this strategy may be also applicable to engineering E. coli for other customized bioproducts.

7.
Metab Eng ; 44: 1-12, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28867349

RESUMO

Economically competitive microbial production of biorenewable fuels and chemicals is often impeded by toxicity of the product to the microbe. Membrane damage is often identified as a major mechanism of this toxicity. Prior efforts to strengthen the microbial membrane by changing the phospholipid distribution have largely focused on the fatty acid tails. Herein, a novel strategy of phospholipid head engineering is demonstrated in Escherichia coli. Specifically, increasing the expression of phosphatidylserine synthase (+pssA) was found to significantly increase both the tolerance and production of octanoic acid, a representative membrane-damaging solvent. Tolerance of other industrially-relevant inhibitors, such as furfural, acetate, toluene, ethanol and low pH was also increased. In addition to the increase in the relative abundance of the phosphoethanolamine (PE) head group in the +pssA strain, there were also changes in the fatty acid tail composition, resulting in an increase in average length, percent unsaturation and decreased abundance of cyclic rings. This +pssA strain had significant changes in: membrane integrity, surface potential, electrochemical potential and hydrophobicity; sensitivity to intracellular acidification; and distribution of the phospholipid tails, including an increase in average length and percent unsaturation and decreased abundance of cyclic rings. Molecular dynamics simulations demonstrated that the +PE membrane had increased resistance to penetration of ethanol into the hydrophobic core and also the membrane thickness. Further hybrid models in which only the head group distribution or fatty acid tail distribution was altered showed that the increase in PE content is responsible for the increase in bilayer thickness, but the increased hydrophobic core thickness is due to altered distribution of both the head groups and fatty acid tails. This work demonstrates the importance of consideration of the membrane head groups, as well as a modeling approach, in membrane engineering efforts.


Assuntos
Proteínas de Bactérias , Escherichia coli , Etanolaminas/metabolismo , Glicosiltransferases , Engenharia Metabólica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo
8.
Microb Cell Fact ; 16(1): 38, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245829

RESUMO

BACKGROUND: Construction of microbial biocatalysts for the production of biorenewables at economically viable yields and titers is frequently hampered by product toxicity. Membrane damage is often deemed as the principal mechanism of this toxicity, particularly in regards to decreased membrane integrity. Previous studies have attempted to engineer the membrane with the goal of increasing membrane integrity. However, most of these works focused on engineering of phospholipids and efforts to identify membrane proteins that can be targeted to improve fatty acid production have been unsuccessful. RESULTS: Here we show that deletion of outer membrane protein ompF significantly increased membrane integrity, fatty acid tolerance and fatty acid production, possibly due to prevention of re-entry of short chain fatty acids. In contrast, deletion of fadL resulted in significantly decreased membrane integrity and fatty acid production. Consistently, increased expression of fadL remarkably increased membrane integrity and fatty acid tolerance while also increasing the final fatty acid titer. This 34% increase in the final fatty acid titer was possibly due to increased membrane lipid biosynthesis. Tuning of fadL expression showed that there is a positive relationship between fadL abundance and fatty acid production. Combinatorial deletion of ompF and increased expression of fadL were found to have an additive role in increasing membrane integrity, and was associated with a 53% increase the fatty acid titer, to 2.3 g/L. CONCLUSIONS: These results emphasize the importance of membrane proteins for maintaining membrane integrity and production of biorenewables, such as fatty acids, which expands the targets for membrane engineering.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/fisiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Transporte de Ácido Graxo/genética , Ácidos Graxos/biossíntese , Porinas/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Deleção de Genes , Expressão Gênica , Lipídeos de Membrana/biossíntese , Deleção de Sequência
9.
Biotechnol Biofuels ; 9: 262, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980672

RESUMO

BACKGROUND: Succinate biosynthesis of Escherichia coli is reducing equivalent-dependent and the EMP pathway serves as the primary reducing equivalent source under anaerobic condition. Compared with EMP, pentose phosphate pathway (PPP) is reducing equivalent-conserving but suffers from low efficacy. In this study, the ribosome binding site library and modified multivariate modular metabolic engineering (MMME) approaches are employed to overcome the low efficacy of PPP and thus increase succinate production. RESULTS: Altering expression levels of different PPP enzymes have distinct effects on succinate production. Specifically, increased expression of five enzymes, i.e., Zwf, Pgl, Gnd, Tkt, and Tal, contributes to increased succinate production, while the increased expression of two enzymes, i.e., Rpe and Rpi, significantly decreases succinate production. Modular engineering strategy is employed to decompose PPP into three modules according to position and function. Engineering of Zwf/Pgl/Gnd and Tkt/Tal modules effectively increases succinate yield and production, while engineering of Rpe/Rpi module decreases. Imbalance of enzymatic reactions in PPP is alleviated using MMME approach. Finally, combinational utilization of engineered PPP and SthA transhydrogenase enables succinate yield up to 1.61 mol/mol glucose, which is 94% of theoretical maximum yield (1.71 mol/mol) and also the highest succinate yield in minimal medium to our knowledge. CONCLUSIONS: In summary, we systematically engineered the PPP for improving the supply of reducing equivalents and thus succinate production. Besides succinate, these PPP engineering strategies and conclusions can also be applicable to the production of other reducing equivalent-dependent biorenewables.

10.
Metab Eng ; 35: 105-113, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26875445

RESUMO

Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness.


Assuntos
Proteínas de Bactérias , Escherichia coli , Engenharia Metabólica , Pseudomonas aeruginosa/genética , cis-trans-Isomerases , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos Insaturados , Pseudomonas aeruginosa/enzimologia , cis-trans-Isomerases/biossíntese , cis-trans-Isomerases/genética
11.
Adv Biochem Eng Biotechnol ; 155: 107-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25577396

RESUMO

Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.


Assuntos
Álcoois/metabolismo , Ácidos Carboxílicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos
12.
Metab Eng ; 24: 87-96, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24831708

RESUMO

Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield.


Assuntos
Evolução Molecular Direcionada , Escherichia coli , Engenharia Metabólica , Ácido Succínico/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , NAD/genética , NAD/metabolismo , NADP Trans-Hidrogenase Específica para B/genética , NADP Trans-Hidrogenase Específica para B/metabolismo , Via de Pentose Fosfato/genética , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
13.
Appl Microbiol Biotechnol ; 98(5): 2197-205, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323285

RESUMO

Although many efforts had been performed to engineer Escherichia coli for succinate production, succinate efflux system had not been investigated as an engineering target for improving succinate production. In this work, four Dcu transporters, which had been reported to be responsible for C4-dicarboxylates transportation of E. coli, were investigated for their succinate efflux capabilities. These four dcu genes were deleted individually in a previously constructed succinate-producing strain to study their effects on succinate production. Deleting dcuA and dcuD genes had nearly no influence, while deleting dcuB and dcuC genes led to 15 and 11% decrease of succinate titer, respectively. Deleting both dcuB and dcuC genes resulted in 90% decrease of succinate titer, suggesting that DcuB and DcuC were the main transporters for succinate efflux and they functioned as independent and mutually redundant succinate efflux transporters. Furthermore, RBS library having strengths varied from 0.17 to 8.6 times of induced E. coli lacZ promoter was used to modulate dcuB and dcuC genes for improving succinate production. Modulating these two genes in combination led to 34% increase of succinate titer. To the best of knowledge, this was the first report about improving succinate production through engineering succinate efflux system.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ácido Succínico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Expressão Gênica , Engenharia Metabólica
14.
PLoS One ; 8(9): e75105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058653

RESUMO

As prokaryotic models for multicellular development, Stigmatella aurantiaca and Myxococcus xanthus share many similarities in terms of social behaviors, such as gliding motility. Our current understanding of myxobacterial grouped-cell motilities comes mainly from the research on M. xanthus, which shows that filamentous type IV pili (TFP), composed of type IV pilin (also called PilA protein) subunits, are the key apparatus for social motility (S-motility). However, little is known about the pilin protein in S. aurantiaca. We cloned and sequenced four genes (pilA(Sa1~4)) from S. aurantiaca DSM17044 that are homologous to pilA(Mx) (pilA gene in M. xanthus DK1622). The homology and similarities among pilA(Sa) proteins and other myxobacterial homologues were systematically analyzed. To determine their potential biological functions, the four pilA(Sa) genes were expressed in M. xanthus DK10410 (ΔpilA(Mx)), which did not restore S-motility on soft agar or EPS production to host cells. After further analysis of the motile behaviors in a methylcellulose solution, the M. xanthus strains were categorized into three types. YL6101, carrying pilA(Sa1), and YL6104, carrying pilA(Sa4), produced stable but unretractable surface pili; YL6102, carrying pilA(Sa2), produced stable surface pili and exhibited reduced TFP-dependent motility in methylcellulose; YL6103, carrying pilA(Sa3), produced unstable surface pili. Based on these findings, we propose that pilA(Sa2) might be responsible for the type IV pilin production involved in group motility in S. aurantiaca DSM17044. After examining the developmental processes, it was suggested that the expression of PilA(Sa4) protein might have positive effects on the fruiting body formation of M. xanthus DK10410 cells. Moreover, the formation of fruiting body in M. xanthus cells with stable exogenous TFPSa were compensated by mixing them with S. aurantiaca DSM17044 cells. Our results shed some light on the features and functions of type IV pilin homologues in S. aurantiaca.


Assuntos
Proteínas de Fímbrias/biossíntese , Expressão Gênica , Myxococcus xanthus/metabolismo , Stigmatella aurantiaca/metabolismo , Proteínas de Fímbrias/genética , Myxococcus xanthus/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Stigmatella aurantiaca/genética
15.
Appl Environ Microbiol ; 79(16): 4838-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747698

RESUMO

Phosphoenolpyruvate (PEP) carboxylation is an important step in the production of succinate by Escherichia coli. Two enzymes, PEP carboxylase (PPC) and PEP carboxykinase (PCK), are responsible for PEP carboxylation. PPC has high substrate affinity and catalytic velocity but wastes the high energy of PEP. PCK has low substrate affinity and catalytic velocity but can conserve the high energy of PEP for ATP formation. In this work, the expression of both the ppc and pck genes was modulated, with multiple regulatory parts of different strengths, in order to investigate the relationship between PPC or PCK activity and succinate production. There was a positive correlation between PCK activity and succinate production. In contrast, there was a positive correlation between PPC activity and succinate production only when PPC activity was within a certain range; excessive PPC activity decreased the rates of both cell growth and succinate formation. These two enzymes were also activated in combination in order to recruit the advantages of each for the improvement of succinate production. It was demonstrated that PPC and PCK had a synergistic effect in improving succinate production.


Assuntos
Escherichia coli/enzimologia , Microbiologia Industrial , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxilase/genética , Ácido Succínico/metabolismo , Escherichia coli/genética , Engenharia Metabólica , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
PLoS Genet ; 9(2): e1003306, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437010

RESUMO

The gene encoding the GroEL chaperonin is duplicated in nearly 30% of bacterial genomes; and although duplicated groEL genes have been comprehensively determined to have distinct physiological functions in different species, the mechanisms involved have not been characterized to date. Myxococcus xanthus DK1622 has two copies of the groEL gene, each of which can be deleted without affecting cell viability; however, the deletion of either gene does result in distinct defects in the cellular heat-shock response, predation, and development. In this study, we show that, from the expression levels of different groELs, the distinct functions of groEL1 and groEL2 in predation and development are probably the result of the substrate selectivity of the paralogous GroEL chaperonins, whereas the lethal effect of heat shock due to the deletion of groEL1 is caused by a decrease in the total groEL expression level. Following a bioinformatics analysis of the composition characteristics of GroELs from different bacteria, we performed region-swapping assays in M. xanthus, demonstrating that the differences in the apical and the C-terminal equatorial regions determine the substrate specificity of the two GroELs. Site-directed mutagenesis experiments indicated that the GGM repeat sequence at the C-terminus of GroEL1 plays an important role in functional divergence. Divergent functions of duplicated GroELs, which have similar patterns of variation in different bacterial species, have thus evolved mainly via alteration of the apical and the C-terminal equatorial regions. We identified the specific substrates of strain DK1622's GroEL1 and GroEL2 using immunoprecipitation and mass spectrometry techniques. Although 68 proteins bound to both GroEL1 and GroEL2, 83 and 46 proteins bound exclusively to GroEL1 or GroEL2, respectively. The GroEL-specific substrates exhibited distinct molecular sizes and secondary structures, providing an encouraging indication for GroEL evolution for functional divergence.


Assuntos
Chaperonina 60 , Evolução Molecular , Genoma Bacteriano , Resposta ao Choque Térmico/genética , Sequência de Aminoácidos , Sobrevivência Celular/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli , Duplicação Gênica , Mutagênese Sítio-Dirigida , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Especificidade por Substrato
17.
Appl Microbiol Biotechnol ; 97(6): 2513-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22895848

RESUMO

The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) of Escherichia coli was usually inactivated to increase PEP supply for succinate production. However, cell growth and glucose utilization rate decreased significantly with PTS inactivation. In this work, two glucose transport proteins and two glucokinases (Glk) from E. coli and Zymomonas mobilis were recruited in PTS(-) strains, and their impacts on glucose utilization and succinate production were compared. All PTS(-) strains recruiting Z. mobilis glucose facilitator Glf had higher glucose utilization rates than PTS(-) strains using E. coli galactose permease (GalP), which was suggested to be caused by higher glucose transport velocity and lower energetic cost of Glf. The highest rate obtained by combinatorial modulation of glf and glk E. coli (2.13 g/L•h) was 81 % higher than the wild-type E. coli and 30 % higher than the highest rate obtained by combinatorial modulation of galP and glk E. coli . On the other hand, although glucokinase activities increased after replacing E. coli Glk with isoenzyme of Z. mobilis, glucose utilization rate decreased to 0.58 g/L•h, which was assumed due to tight regulation of Z. mobilis Glk by energy status of the cells. For succinate production, using GalP led to a 20 % increase in succinate productivity, while recruiting Glf led to a 41 % increase. These efficient alternative glucose utilization pathways obtained in this work can also be used for production of many other PEP-derived chemicals, such as malate, fumarate, and aromatic compounds.


Assuntos
Escherichia coli/enzimologia , Glucose/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Ácido Succínico/metabolismo , Zymomonas/enzimologia , Escherichia coli/genética , Deleção de Genes , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/deficiência , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zymomonas/genética
18.
ISME J ; 4(10): 1282-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20410933

RESUMO

Myxococcus fulvus HW-1, a salt-tolerant bacterial strain, which was isolated from a coastal environment, changes its behavior with different salinities. To study the relationship between behavioral shifts and the adaption to oceanic conditions, the HW-1 strain was randomly mutagenized using transposon insertion, producing a dispersed-growing mutant, designated YLH0401. The mutant did not develop fruiting bodies and myxospores, was deficient in S-motility, produced less extracellular matrix and was less salt tolerant. The YLH0401 strain was determined to be mutated by a single insertion in a large gene of unknown function (7011 bp in size), which is located in a horizontally transferred DNA fragment. The gene is expressed during the vegetative growth stage, as well as highly and stably expressed during the development stage. This horizontally transferred gene may allow Myxococcus to adapt to oceanic conditions.


Assuntos
Proteínas de Bactérias/fisiologia , Myxococcus/fisiologia , Sais/metabolismo , Transdução de Sinais , Estresse Fisiológico , Proteínas de Bactérias/genética , Divisão Celular , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Microbiologia Ambiental , Transferência Genética Horizontal , Ilhas Genômicas , Locomoção , Dados de Sequência Molecular , Mutagênese Insercional , Myxococcus/genética , Myxococcus/crescimento & desenvolvimento , Myxococcus/metabolismo , Análise de Sequência de DNA , Esporos Bacterianos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...