Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(4): 2587-2599, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741185

RESUMO

Benzoquinone derivatives (BQDs) are hybridized inside activated carbon (AC) pores via gas-phase adsorption to prepare electrochemical capacitor materials. In this study, 2 mmol of BQDs are hybridized with 1 g of AC. The hybridization of alkylbenzoquinones (ABQs) with AC enhances the volumetric capacitances of the hybrids from 117 to 201 F cm-3 at 0.05 A g-1 and the capacitances are retained up to 73% at 10 A g-1. Meanwhile, the volumetric capacitances are increased to 163 F cm-3 at 0.05 A g-1 by the hybridization of halobenzoquinones (HBQs) and the capacitance retentions at 0.05 A g-1 are ∼62%, which are higher than that of AC (46%). The results of electrochemical measurements suggest that HBQs exist as agglomerates while ABQs are finely dispersed inside the pores. The ABQs have good contact with the conductive carbon pore surface compared to the HBQs. Consequently, most of the ABQ molecules undergo reversible redox reactions (i.e., high utilization efficiencies), and a large contact area facilitates charge transfer at the large contact interface, thereby endowing the hybrids of ABQs with fast charging and discharging characteristics. HBQ molecules can be finely dispersed by liquid-phase adsorption, but the finely dispersed HBQ molecules are mobile inside the pores at room temperature and gradually form agglomerates. The difference in the existing form of BQDs is explained by the dominant interaction affecting the BQD molecules. ABQs have a strong interaction with the carbon pore surface while the intermolecular interaction is dominant for HBQs.

2.
RSC Adv ; 9(47): 27602-27614, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529188

RESUMO

We demonstrate the hybridization of a redox-active quinone derivative, 2,5-dichloro-1,4-benzoquinone (DCBQ), and porous carbons with different pore structures for aqueous electrochemical capacitor electrodes. The hybridization is performed in the gas phase, which enables accurate porous carbon/DCBQ weight ratios. This method is advantageous over conventional liquid phase adsorption, in terms of facile optimization of the porous carbon/DCBQ weight ratio to obtain high-performance aqueous electrochemical capacitor electrodes, dependent on the kind of porous carbons; moreover, complete adsorption in the liquid phase cannot be achieved by the conventional liquid phase adsorption method. Their electrochemical capacitor performances are evaluated using an aqueous 1 M H2SO4 electrolyte, and the adsorbed DCBQ undergoes redox reactions inducing pseudocapacitance within the pores of porous carbons. To study the effect of the pore size on the electrochemical capacitor behavior, two kinds of activated carbon (AC) with different pore sizes are examined: the microporous AC and the AC with both micro- and mesopores. Additionally, we examine ordered microporous carbon with a uniform pore size of 1.2 nm and a three-dimensionally (3D) ordered and mutually connected pore structure. The results reveal that mesopores facilitate proton conduction inside the DCBQ-constrained carbon pores, whereas the 3D-ordered and mutually connected micropores balance high volumetric capacitance enhancement with excellent rate capability. Such high proton conduction inside such constrained spaces can be explained only by the Grotthuss mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...