Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 91(6): e23763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895803

RESUMO

Estrogen is an important hormone that plays a role in regulating follicle development and oocyte maturation. Transzonal projections (TZPs) act as communication bridges between follicle somatic cells and oocytes, and their dynamic changes are critical for oocyte development and maturation. However, the roles and mechanisms of estrogen in regulating TZPs during follicular development are not yet understood. We found that the proportion of oocytes spontaneously resuming meiosis increases as the follicle grows, which is accompanied by rising estrogen levels in follicles and decreasing TZPs in cumulus-oocyte complex. To further explore the effect of elevated estrogen levels on TZP assembly, additional estrogen was added to the culture system. The increased estrogen level significantly decreased the mRNA and protein expression levels of TZP assembly-related genes. Subsequent research revealed that TZP regulation by estrogen was mediated by the membrane receptor GPER and downstream ERK1/2 signaling pathway. In summary, our study suggests that estrogen may regulate goat oocyte meiosis arrest by decreasing TZP numbers via estrogen-mediated GPER activation during follicle development.


Assuntos
Células do Cúmulo , Estrogênios , Cabras , Oócitos , Folículo Ovariano , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Animais , Oócitos/metabolismo , Oócitos/citologia , Feminino , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrogênio/metabolismo , Estrogênios/metabolismo , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/citologia , Meiose/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia
2.
Theriogenology ; 219: 65-74, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402699

RESUMO

Both oocyte secretory factors (OSFs) and estrogen are essential for the development and function of mammalian ovarian follicles, playing synergistic role in regulating oocyte growth. OSFs can significantly affect the biological processes regulated by estrogen in cumulus cells (CCs). It is a scientific question worth investigating whether oocyte secretory factors can influence the expression of estrogen receptors in CCs. In our study, we observed a significant increase in the mRNA and protein expressions of estrogen receptor ß (Esr2/ERß) and G-protein-coupled estrogen receptor (GPER) in cumulus cells of goat cumulus-oocyte complexes (COCs) cultured in vitro for 6 h. Furthermore, the addition of 10 ng/mL growth-differentiation factor 9 (GDF9) and 5 ng/mL bone morphogenetic protein 15 (BMP15) to the culture medium of goat COCs resulted in a significant increase in the expressions of ERß and GPER in cumulus cells. To explore the mechanism further, we performed micromanipulation to remove oocyte contents and co-cultured the oocytectomized complexes (OOXs) with denuded oocytes (DOs) or GDF9/BMP15. The expressions of ERß and GPER in the co-culture groups were significantly higher than those in the OOXs group, but there was no difference compared to the COCs group. Mechanistically, we found that SB431542 (inhibitor of GDF9 bioactivity), but not LDN193189 (inhibitor of BMP15 bioactivity), abolished the upregulation of ERß and GPER in cumulus cells and the activation of Smad2/3 signaling. In conclusion, our results demonstrate that the oocyte secretory factor GDF9 promotes the activation of Smad2/3 signaling in cumulus cells during goat COCs culture in vitro, and the phosphorylation of Smad2/3 induces the expression of estrogen receptors ERß and GPER in cumulus cells.


Assuntos
Células do Cúmulo , Receptores de Estrogênio , Feminino , Animais , Células do Cúmulo/fisiologia , Receptores de Estrogênio/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Cabras/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Oócitos/fisiologia , Estrogênios/metabolismo , Proteína Morfogenética Óssea 15/metabolismo
3.
Animals (Basel) ; 13(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136917

RESUMO

C-type natriuretic peptide (CNP) is a peptide molecule naturally found in follicles and can be used to extend meiotic resumption and enhance the potential for oocytes to develop. However, the mechanism by which CNP improves goat oocyte quality remains unclear. In this study, cumulus-oocyte complexes (COCs) from goats were pre-treated with CNP prior to IVM, and the results showed that pre-treatment with CNP enhanced goat oocyte maturation. First, we discovered that CNP maintained communication between cumulus cells and oocytes by regulating the transzonal projections (TZPs). We then found that CNP treatment reduced abnormal spindle formation and increased the expression of genes associated with spindle assembly and the spindle assembly checkpoint. Moreover, further analysis showed that oocytes exhibited better antioxidant ability in the CNP treatment group, which mainly manifested in higher glutathione (GSH) and lower reactive oxygen species (ROS) concentrations. Enhanced mitochondrial activity was signified via the augmented expression of mitochondrial oxidative metabolism and fusion and fission-related genes, thus diminishing the apoptosis of the oocytes. Overall, these results provide novel insights into the potential mechanism by which CNP treatment before IVM can improve oocyte quality.

4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37925610

RESUMO

The increased production of high-quality oocytes lies at the heart of the search to accelerate the reproduction of high-quality breeding livestock using assisted reproductive technology. Follicle-stimulating hormone (FSH) maintains the arrest of oocyte meiosis during early follicular development in vivo and promotes the synchronous maturation of nucleus and cytoplasm to improve oocyte quality. However, the mechanism by which FSH maintains meiotic arrest in oocytes is still not fully understood. Oocytes spontaneously resume meiosis once released from the arrested state. In this study, we isolated goat antral follicles with a diameter of 2.0-4.0 mm, cultured them in vitro either with or without added FSH, and finally collected the oocytes to observe their meiotic state. The results showed that FSH effectively inhibited the meiotic recovery of oocytes in follicles [4 h: control (n = 84) vs. with FSH (n = 86), P = .0115; 6 h: control (n = 86) vs. FSH (n = 85), P = 0.0308; and 8 h: control (n = 95) vs. FSH (n = 101), P = 0.0039]. FSH significantly inhibited the downregulation of natriuretic peptide receptor 2 (NPR2) expression and cyclic guanosine monophosphate (cGMP) synthesis during follicular culture in vitro (P < 0.05). Further exploration found that FSH promoted the synthesis of 17ß-estradiol (E2) (P = .0249 at 4 h and P = .0039 at 8 h) and maintained the expression of the estrogen nuclear receptor ERß, but not the estrogen nuclear receptor ERα during follicle culture in vitro (P = .0190 at 2 h, and P = .0100 at 4 h). In addition, E2/ER (estrogen nuclear receptors ERα and ERß) mediated the inhibitory effect of FSH on the downregulation of NPR2 expression and cGMP synthesis, ultimately preventing the meiotic recovery of oocytes (P < .05). In summary, our study showed that FSH-induced estrogen production in goat follicles, and the E2/ER signaling pathway, both mediated meiotic arrest in FSH-induced goat oocytes.


Obtaining a greater number of high-quality oocytes to accelerate the reproduction of high-quality breeding livestock using artificial-assisted reproductive technology remains a pressing problem in animal husbandry and requires further research into the mechanism of oocyte maturation. We investigated the regulatory action of follicle-stimulating hormone (FSH) on the meiosis of oocytes during goat follicle culture in vitro. We found that FSH promoted 17ß-estradiol (E2) synthesis and that E2/ER (estrogen nuclear receptors ERα and ERß)-mediated FSH regulation of the CNP/NPR2 (C-type natriuretic peptide/natriuretic peptide receptor 2) signaling pathway and oocyte meiosis in goat follicles. This study provided an improved theoretical foundation for the increased production of high-quality oocytes using in vitro culture methods.


Assuntos
Receptor alfa de Estrogênio , Hormônio Foliculoestimulante , Animais , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Cabras , Oócitos , Transdução de Sinais , Estrogênios/metabolismo , Meiose
5.
Free Radic Biol Med ; 195: 74-88, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581058

RESUMO

Decreased oocyte quality and compromised embryo development are particularly prevalent in older females, but the aging-related cellular processes and effective ameliorative approaches have not been fully characterized. Intermittent fasting (IF) can help improve health and extend lifespan; nevertheless, how it regulates reproductive aging and its mechanisms remain unclear. We used naturally aged mice to investigate the role of IF in reproduction and found that just one month of every-other-day fasting was sufficient to improve oocyte quality. IF not only increased antral follicle numbers and ovulation but also enhanced oocyte meiotic competence and embryonic development by improving both nuclear and cytoplasmic maturation in maternally aged oocytes. The beneficial effects of IF manifested as alleviation of spindle structure abnormalities and chromosome segregation errors and maintenance of the correct cytoplasmic organelle reorganization. Moreover, single-cell transcriptome analysis showed that the positive impact of IF on aged oocytes was mediated by restoration of the nicotinamide adenine dinucleotide (NAD+)/Sirt1-mediated antioxidant defense system, which eliminated excessive accumulated ROS to suppress DNA damage and apoptosis. Collectively, these findings suggest that IF is a feasible approach to protect oocytes against advanced maternal age-related oxidation damage and to improve the reproductive outcomes of aged females.


Assuntos
Jejum Intermitente , Oócitos , Gravidez , Feminino , Camundongos , Animais , Folículo Ovariano , Envelhecimento/genética , Ovulação
6.
Redox Biol ; 49: 102215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929573

RESUMO

In mammalian ovaries, oocytes are physically coupled to somatic granulosa cells, and this coupling is crucial for the growth and development of competent oocytes as it mediates the transfer of metabolic support molecules. However, aging-mediated dysregulation in communication between the oocytes and granulosa cells affects the oocyte quality. In the present study, we examined the defected germline-soma communication and reduced mRNA levels encoding key structural components of transzonal projections (TZPs) in maternally aged oocytes. Oral administration of melatonin to aged mice substantially increased TZPs and maintained the cumulus cells-oocyte communication, which played a central role in the production of adequate oocyte ATP levels and reducing the accumulation of reactive oxygen species (ROS), apoptosis, DNA damage, endoplasmic reticulum (ER) stress and spindle/chromosomal defects. This beneficial effect of melatonin was inhibited by carbenoxolone (CBX), a gap junctional uncoupler, which disrupts bidirectional communications between oocyte and somatic cells. Simultaneously, melatonin significantly increased the mRNA and protein levels corresponding to genes associated with TZPs and prevented TZP retraction in in vitro-cultured cumulus-oocyte complex (COCs). Furthermore, we infused melatonin and CBX into the COCs in vitro culture system and monitored the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) in cumulus cells and oocytes. Notably, COCs treated with melatonin demonstrated improved NADPH and GSH levels. Of note, CBX was capable of reducing NADPH and GSH levels, aggravated the ROS accumulation and ER stress. Collectively, our data demonstrate the role of melatonin in preventing age-associated germline-soma communication defects, aiding the relay of antioxidant metabolic molecules for the maintenance of oocyte quality from cumulus cells, which have important potential for improving deficient phenotypes of maternally aged oocytes and the treatment of woman infertility.


Assuntos
Melatonina , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Comunicação Celular , Células do Cúmulo , Feminino , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Oócitos
7.
Theriogenology ; 176: 35-42, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34571396

RESUMO

G protein-coupled estrogen receptor (GPER), which is different from traditional estrogen nuclear receptors (ERs), mediates the rapid transduction of nongenomic signals in cells, and works by regulating transcription and intracellular second messengers. Studies have shown that GPER may regulate oocyte maturation, but the relevant mechanism is not entirely clear. Here, goat cumulus-oocyte complexes (COCs) were used as a model to explore the regulation and mechanism of GPER on oocyte maturation. Our study showed that 17ß-estradiol (E2) significantly reduced cyclic guanosine monophosphate (cGMP) synthesis in COCs and accelerated the meiotic resumption of goat oocytes via GPER. Further investigation found that GPER mediated the downregulation of natriuretic peptide receptor 2 (NPR2) protein expression in goat cumulus cells by E2. In addition, we found that E2 significantly upregulated the mRNA levels of epidermal growth (EGF)-like factors in goat cumulus cells through GPER, and activated the downstream EGF receptor (EGFR) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. Both AG1478 (EGFR inhibitor) and U0126 (ERK1/2 inhibitor) abolished the inhibitory effect of E2 on the protein expression of NPR2. These results indicate that, through GPER, E2 upregulates the mRNA levels of EGF-like factors in goat cumulus cells and activates the downstream EGF signaling network to suppress the expression of NPR2 protein, which results in a decrease in cGMP synthesis and acceleration of meiotic resumption in goat oocytes.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Cabras , Receptores do Fator Natriurético Atrial/metabolismo , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células do Cúmulo/metabolismo , Feminino , Proteínas de Ligação ao GTP , Cabras/metabolismo , Meiose , Oócitos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
8.
Endocrinology ; 161(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068422

RESUMO

Estrogen is an important modulator of reproductive activity through nuclear receptors and G protein-coupled estrogen receptor (GPER). Here, we observed that both estradiol and the GPER-specific agonist G1 rapidly induced cyclic adenosine monophosphate (cAMP) production in cumulus cells, leading to transient stimulation of phosphorylated cAMP response element binding protein (CREB), which was conducive to the transcription of epidermal growth factor (EGF)-like factors, amphiregulin, epiregulin, and betacellulin. Inhibition of GPER by G15 significantly reduced estradiol-induced CREB phosphorylation and EGF-like factor gene expression. Consistently, the silencing of GPER expression in cultured cumulus cells abrogated the estradiol-induced CREB phosphorylation and EGF-like factor transcription. In addition, the increase in EGF-like factor expression in the cumulus cells is associated with EGF receptor (EFGR) tyrosine kinase phosphorylation and extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Furthermore, we demonstrated that GPER-mediated phosphorylation of EGFR and ERK1/2 was involved in reduced gap junction communication, cumulus expansion, increased oocyte mitochondrial activity and first polar body extrusion. Overall, our study identified a novel function for estrogen in regulating EGFR activation via GPER in cumulus cells during oocyte maturation.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Estradiol/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Animais , Células do Cúmulo/metabolismo , AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Feminino , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oócitos/metabolismo , Fosforilação/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Aging (Albany NY) ; 12(20): 20801-20816, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33113510

RESUMO

The estrogen membrane receptor GPR30 (also known as G-protein coupled receptor 30) has recently been shown to be involved in the regulation of oocyte maturation and cumulus expansion. However, whether GPR30 expression is regulated by gonadotropin stimulation and how it participates in the regulation of the maturation process is still not clear. In this study, we explored the mechanism underlying the synergy between luteinizing hormone and 17ß-estradiol (17ß-E2) to improve the epidermal growth factor (EGF) response in cumulus oocyte complexes (COCs) during oocyte maturation in mice. The expression and distribution of GPR30, EGFR, and EGF-like growth factors were examined by real-time quantitative PCR, western blot, and immunofluorescence staining. Lyso-Tracker Red labeling was performed to detect the lysosomal activity in follicle granular cells (FGCs). Cumulus expansion of COCs was evaluated after in vitro maturation for 16 h. We found that EGF-like growth factors transmit LH signals to increase GRP30 levels by inhibiting protein degradation in lysosomes. Meanwhile, 17ß-E2 stimulates the GPR30 signaling pathway to increase EGF receptor levels, enhancing the response ability of EGF signaling in COCs and thus promoting cumulus expansion. In conclusion, our study reveals the synergistic mechanism between LH and estrogen in the regulation of cumulus expansion during oocyte maturation process.


Assuntos
Células do Cúmulo/fisiologia , Receptores ErbB/fisiologia , Estradiol/fisiologia , Estrogênios/fisiologia , Hormônio Luteinizante/fisiologia , Oócitos/fisiologia , Oogênese/fisiologia , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais , Animais , Feminino , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...