RESUMO
The distribution of fitness effects of new mutations plays a central role in evolutionary biology. Estimates of the distribution of fitness effect from experimental mutation accumulation lines are compromised by the complete linkage disequilibrium between mutations in different lines. To reduce the linkage disequilibrium, we constructed 2 sets of recombinant inbred lines from a cross of 2 Caenorhabditis elegans mutation accumulation lines. One set of lines ("RIAILs") was intercrossed for 10 generations prior to 10 generations of selfing; the second set of lines ("RILs") omitted the intercrossing. Residual linkage disequilibrium in the RIAILs is much less than in the RILs, which affects the inferred distribution of fitness effect when the sets of lines are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILs) infers a large fraction of mutations with positive effects (â¼40%); models that constrain mutations to have negative effects fit much worse. The conclusion is the same using only the RILs. For the RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as models that allow positive effects. When mutations in high linkage disequilibrium are pooled into haplotypes, the inferred distribution of fitness effect becomes increasingly negative-skewed and leptokurtic. We conclude that the conventional wisdom-most mutations have effects near 0, a handful of mutations have effects that are substantially negative, and mutations with positive effects are very rare-is likely correct, and that unless it can be shown otherwise, estimates of the distribution of fitness effect that infer a substantial fraction of mutations with positive effects are likely confounded by linkage disequilibrium.
Assuntos
Caenorhabditis elegans , Aptidão Genética , Desequilíbrio de Ligação , Modelos Genéticos , Acúmulo de Mutações , Animais , Caenorhabditis elegans/genética , Recombinação Genética , Mutação , Endogamia , Haplótipos , Cruzamentos GenéticosRESUMO
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Assuntos
Caenorhabditis , Bases de Dados Genéticas , Animais , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis elegans/genética , Genoma , Estudo de Associação Genômica Ampla , GenômicaRESUMO
Starvation resistance is important to disease and fitness, but the genetic basis of its natural variation is unknown. Uncovering the genetic basis of complex, quantitative traits such as starvation resistance is technically challenging. We developed a synthetic-population (re)sequencing approach using molecular inversion probes (MIP-seq) to measure relative fitness during and after larval starvation in Caenorhabditis elegans. We applied this competitive assay to 100 genetically diverse, sequenced, wild strains, revealing natural variation in starvation resistance. We confirmed that the most starvation-resistant strains survive and recover from starvation better than the most starvation-sensitive strains using standard assays. We performed genome-wide association (GWA) with the MIP-seq trait data and identified three quantitative trait loci (QTL) for starvation resistance, and we created near isogenic lines (NILs) to validate the effect of these QTL on the trait. These QTL contain numerous candidate genes including several members of the Insulin/EGF Receptor-L Domain (irld) family. We used genome editing to show that four different irld genes have modest effects on starvation resistance. Natural variants of irld-39 and irld-52 affect starvation resistance, and increased resistance of the irld-39; irld-52 double mutant depends on daf-16/FoxO. DAF-16/FoxO is a widely conserved transcriptional effector of insulin/IGF signaling (IIS), and these results suggest that IRLD proteins modify IIS, although they may act through other mechanisms as well. This work demonstrates efficacy of using MIP-seq to dissect a complex trait and it suggests that irld genes are natural modifiers of starvation resistance in C. elegans.
Assuntos
Proteínas de Caenorhabditis elegans , Inanição , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Estudo de Associação Genômica Ampla , Insulina/metabolismo , Inanição/genéticaRESUMO
Caenorhabditis elegans is one of the major model organisms in biology, but only recently have researchers focused on its natural ecology. The relative sparsity of information about C. elegans in its natural context comes from the challenges involved in the identification of the small nematode in nature. Despite these challenges, an increasing focus on the ecology of C. elegans has caused a wealth of new information regarding its life outside of the laboratory. The intensified search for C. elegans in nature has contributed to the discovery of many new Caenorhabditis species and revealed that congeneric nematodes frequently cohabitate in the wild, where they feed on microbial blooms associated with rotting plant material. The identification of new species has also revealed that the androdioecious mating system of males and self-fertilizing hermaphrodites has evolved three times independently within Caenorhabditis. The other two selfing species, C. briggsae and C. tropicalis, share the experimental advantages of C. elegans and have enabled comparative studies into the mechanistic basis of important traits, including self-fertilization. Despite these advances, much remains to be learned about the ecology and natural diversity of these important species. For example, we still lack functional information for many of their genes, which might only be attained through an understanding of their natural ecology. To facilitate ecological research of selfing Caenorhabditis nematodes, we developed a highly scalable method to collect nematodes from the wild. Our method makes use of mobile data collection platforms, cloud-based databases, and the R software environment to enhance researchers' ability to collect nematodes from the wild, record associated ecological data, and identify wild nematodes using molecular barcodes.
Assuntos
Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Masculino , Plantas , ReproduçãoRESUMO
The publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus. However, despite being widely used, the currently available C. briggsae reference genome is substantially less complete and structurally accurate than the C. elegans reference genome. Here, we used high-coverage Oxford Nanopore long-read and chromosome-conformation capture data to generate chromosome-level reference genomes for two C. briggsae strains: QX1410, a new reference strain closely related to the laboratory AF16 strain, and VX34, a highly divergent strain isolated in China. We also sequenced 99 recombinant inbred lines generated from reciprocal crosses between QX1410 and VX34 to create a recombination map and identify chromosomal domains. Additionally, we used both short- and long-read RNA sequencing data to generate high-quality gene annotations. By comparing these new reference genomes to the current reference, we reveal that hyper-divergent haplotypes cover large portions of the C. briggsae genome, similar to recent reports in C. elegans and C. tropicalis. We also show that the genomes of selfing Caenorhabditis species have undergone more rearrangement than their outcrossing relatives, which has biased previous estimates of rearrangement rate in Caenorhabditis. These new genomes provide a substantially improved platform for comparative genomics in Caenorhabditis and narrow the gap between the quality of genomic resources available for C. elegans and C. briggsae.
Assuntos
Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Cromossomos , Genoma , GenômicaRESUMO
The nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. To characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche comprises moderately moist native forests at high elevations (500-1,500 m) where ambient air temperatures are cool (15-20°C). Compared to other Caenorhabditis species found on the Hawaiian Islands (e.g., Caenorhabditis briggsae and Caenorhabditis tropicalis), we found that C. elegans were enriched in native habitats. We measured levels of genetic diversity and differentiation among Hawaiian C. elegans and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyper-divergent regions, which may be maintained by balancing selection and are enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and contribute to our understanding of the forces that shape genetic diversity on the most remote volcanic archipelago in the world.
Assuntos
Caenorhabditis elegans , Caenorhabditis , Animais , Caenorhabditis/genética , Variação Genética/genética , Havaí , IlhasRESUMO
Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T â T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.
Assuntos
Caenorhabditis elegans , Laboratórios , Alelos , Animais , Caenorhabditis elegans/genética , Mutação , Estresse Oxidativo/genéticaRESUMO
Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times. The transition from outcrossing to selfing decreases the effective population size, effective recombination rate and heterozygosity within a species. These changes lead to a reduction in genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection. Within the nematode genus Caenorhabditis, selfing has evolved at least three times, and all three species, including the model organism Caenorhabditis elegans, show substantially reduced genetic diversity relative to outcrossing species. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to these environments. Here, we examine the whole-genome sequences from 609 wild C. elegans strains isolated worldwide and show that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response and xenobiotic stress response. Population genomic evidence suggests that genetic diversity in these regions has been maintained by long-term balancing selection. Using long-read genome assemblies for 15 wild strains, we show that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to levels found between Caenorhabditis species that diverged millions of years ago. These results provide an example of how species can avoid the evolutionary dead end associated with selfing.
Assuntos
Caenorhabditis elegans , Variação Genética , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Genoma , HaplótiposRESUMO
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.
Assuntos
Canais de Cloreto/efeitos dos fármacos , Haemonchus/efeitos dos fármacos , Ivermectina/análogos & derivados , Infecções por Nematoides/tratamento farmacológico , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Resistência a Medicamentos/genética , Ivermectina/farmacologiaRESUMO
Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Caenorhabditis elegans/genética , Zinco/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mapeamento Cromossômico/métodos , Variação Genética , Homeostase , Locos de Características Quantitativas , Zinco/metabolismo , Dedos de ZincoRESUMO
Mutations in human metabolic genes can lead to rare diseases known as inborn errors of human metabolism. For instance, patients with loss-of-function mutations in either subunit of propionyl-CoA carboxylase suffer from propionic acidemia because they cannot catabolize propionate, leading to its harmful accumulation. Both the penetrance and expressivity of metabolic disorders can be modulated by genetic background. However, modifiers of these diseases are difficult to identify because of the lack of statistical power for rare diseases in human genetics. Here, we use a model of propionic acidemia in the nematode Caenorhabditis elegans to identify genetic modifiers of propionate sensitivity. Using genome-wide association (GWA) mapping across wild strains, we identify several genomic regions correlated with reduced propionate sensitivity. We find that natural variation in the putative glucuronosyltransferase GLCT-3, a homolog of human B3GAT, partly explains differences in propionate sensitivity in one of these genomic intervals. We demonstrate that loss-of-function alleles in glct-3 render the animals less sensitive to propionate. Additionally, we find that C. elegans has an expansion of the glct gene family, suggesting that the number of members of this family could influence sensitivity to excess propionate. Our findings demonstrate that natural variation in genes that are not directly associated with propionate breakdown can modulate propionate sensitivity. Our study provides a framework for using C. elegans to characterize the contributions of genetic background in models of human inborn errors in metabolism.
Assuntos
Predisposição Genética para Doença , Glucuronosiltransferase/genética , Propionatos/farmacologia , Acidemia Propiônica/genética , Alelos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/deficiência , Humanos , Mutação com Perda de Função/genética , Metabolismo/genética , Propionatos/metabolismoRESUMO
Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.
Assuntos
Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Caenorhabditis elegans/isolamento & purificação , Variação Genética , Filogenia , Migração Animal , Animais , Caenorhabditis/genética , Caenorhabditis elegans/anatomia & histologia , Feminino , Mapeamento Geográfico , Haplótipos , Havaí , Masculino , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
To understand the genetic basis of complex traits, it is important to be able to efficiently phenotype many genetically distinct individuals. In the nematode Caenorhabditis elegans, individuals have been isolated from diverse populations around the globe and whole-genome sequenced. As a result, hundreds of wild strains with known genome sequences can be used for genome-wide association studies (GWAS). However, phenotypic analysis of these strains can be laborious, particularly for quantitative traits requiring multiple measurements per strain. Starvation resistance is likely a fitness-proximal trait for nematodes, and it is related to metabolic disease risk in humans. However, natural variation in C. elegans starvation resistance has not been systematically characterized, and precise measurement of the trait is time-intensive. Here, we developed a population-selection-and-sequencing-based approach to phenotype starvation resistance in a pool of 96 wild strains. We used restriction site-associated DNA sequencing (RAD-seq) to infer the frequency of each strain among survivors in a mixed culture over time during starvation. We used manual starvation survival assays to validate the trait data, confirming that strains that increased in frequency over time are starvation-resistant relative to strains that decreased in frequency. Further, we found that variation in starvation resistance is significantly associated with variation at a region on chromosome III. Using a near-isogenic line (NIL), we showed the importance of this genomic interval for starvation resistance. This study demonstrates the feasibility of using population selection and sequencing in an animal model for phenotypic analysis of quantitative traits, documents natural variation of starvation resistance in C. elegans, and identifies a genomic region that contributes to such variation.
Assuntos
Adaptação Biológica/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mapeamento Cromossômico , Cromossomos , Seleção Genética , Inanição , Animais , Estudo de Associação Genômica Ampla , Fenótipo , Característica Quantitativa HerdávelRESUMO
Bleomycin is a powerful chemotherapeutic drug used to treat a variety of cancers. However, individual patients vary in their responses to bleomycin. The identification of genetic differences that underlie this response variation could improve treatment outcomes by tailoring bleomycin dosages to each patient. We used the model organism Caenorhabditis elegans to identify genetic determinants of bleomycin-response differences by performing linkage mapping on recombinants derived from a cross between the laboratory strain (N2) and a wild strain (CB4856). This approach identified a small genomic region on chromosome V that underlies bleomycin-response variation. Using near-isogenic lines, and strains with CRISPR-Cas9 mediated deletions and allele replacements, we discovered that a novel nematode-specific gene (scb-1) is required for bleomycin resistance. Although the mechanism by which this gene causes variation in bleomycin responses is unknown, we suggest that a rare variant present in the CB4856 strain might cause differences in the potential stress-response function of scb-1 between the N2 and CB4856 strains, thereby leading to differences in bleomycin resistance.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Proteínas de Caenorhabditis elegans/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Nucleares/genética , Locos de Características Quantitativas , Animais , Caenorhabditis elegans , Polimorfismo Genético , Característica Quantitativa HerdávelRESUMO
Phenotypic complexity is caused by the contributions of environmental factors and multiple genetic loci, interacting or acting independently. Studies of yeast and Arabidopsis often find that the majority of natural variation across phenotypes is attributable to independent additive quantitative trait loci (QTL). Detected loci in these organisms explain most of the estimated heritable variation. By contrast, many heritable components underlying phenotypic variation in metazoan models remain undetected. Before the relative impacts of additive and interactive variance components on metazoan phenotypic variation can be dissected, high replication and precise phenotypic measurements are required to obtain sufficient statistical power to detect loci contributing to this missing heritability. Here, we used a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput fitness assay to detect loci underlying responses to 16 different toxins, including heavy metals, chemotherapeutic drugs, pesticides, and neuropharmaceuticals. Using linkage mapping, we identified 82 QTL that underlie variation in responses to these toxins, and predicted the relative contributions of additive loci and genetic interactions across various growth parameters. Additionally, we identified three genomic regions that impact responses to multiple classes of toxins. These QTL hotspots could represent common factors impacting toxin responses. We went further to generate near-isogenic lines and chromosome substitution strains, and then experimentally validated these QTL hotspots, implicating additive and interactive loci that underlie toxin-response variation.
Assuntos
Metais Pesados/toxicidade , Neurotoxinas/toxicidade , Praguicidas/toxicidade , Locos de Características Quantitativas/genética , Alelos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Epistasia Genética/efeitos dos fármacos , Genômica , Locos de Características Quantitativas/efeitos dos fármacosRESUMO
Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans.
Assuntos
Caenorhabditis elegans/genética , Telômero/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA/metabolismo , Variação Genética , Estudo de Associação Genômica Ampla , Longevidade/genética , Mutação , Análise de Sequência de DNA , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismoRESUMO
DNA replication must be tightly controlled during each cell cycle to prevent unscheduled replication and ensure proper genome maintenance. The currently known controls that prevent re-replication act redundantly to inhibit pre-replicative complex (pre-RC) assembly outside of the G1-phase of the cell cycle. The yeast Saccharomyces cerevisiae has been a useful model organism to study how eukaryotic cells prevent replication origins from reinitiating during a single cell cycle. Using a re-replication-sensitive strain and DNA microarrays, we map sites across the S. cerevisiae genome that are re-replicated as well as sites of pre-RC formation during re-replication. Only a fraction of the genome is re-replicated by a subset of origins, some of which are capable of multiple reinitiation events. Translocation experiments demonstrate that origin-proximal sequences are sufficient to predispose an origin to re-replication. Origins that reinitiate are largely limited to those that can recruit Mcm2-7 under re-replicating conditions; however, the formation of a pre-RC is not sufficient for reinitiation. Our findings allow us to categorize origins with respect to their propensity to reinitiate and demonstrate that pre-RC formation is not the only target for the mechanisms that prevent genomic re-replication.