Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Clin Nutr ESPEN ; 63: 283-293, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972039

RESUMO

BACKGROUND AND AIMS: The challenge posed by diabetes necessitates a paradigm shift from conventional diagnostic approaches focusing on glucose and lipid levels to the transformative realm of precision medicine. This approach, leveraging advancements in genomics and proteomics, acknowledges the individualistic genetic variations, dietary preferences, and environmental exposures in diabetes management. The study comprehensively analyzes the evolving diabetes landscape, emphasizing the pivotal role of genomics, proteomics, microRNAs (miRNAs), metabolomics, and bioinformatics. RESULTS: Precision medicine revolutionizes diabetes research and treatment by diverging from traditional diagnostic methods, recognizing the heterogeneous nature of the condition. MiRNAs, crucial post-transcriptional gene regulators, emerge as promising therapeutic targets, influencing key facets such as insulin signaling and glucose homeostasis. Metabolomics, an integral component of omics sciences, contributes significantly to diabetes research, elucidating metabolic disruptions, and offering potential biomarkers for early diagnosis and personalized therapies. Bioinformatics unveils dynamic connections between natural substances, miRNAs, and cellular pathways, aiding in the exploration of the intricate molecular terrain in diabetes. The study underscores the imperative for experimental validation in natural product-based diabetes therapy, emphasizing the need for in vitro and in vivo studies leading to clinical trials for assessing effectiveness, safety, and tolerability in real-world applications. Global cooperation and ethical considerations play a pivotal role in addressing diabetes challenges worldwide, necessitating a multifaceted approach that integrates traditional knowledge, cultural competence, and environmental awareness. CONCLUSIONS: The key components of diabetes treatment, including precision medicine, metabolomics, bioinformatics, and experimental validation, converge in future strategies, embodying a holistic paradigm for diabetes care anchored in cutting-edge research and global healthcare accessibility.

2.
Mar Drugs ; 22(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921583

RESUMO

The marine environment provides a rich source of distinct creatures containing potentially revolutionary bioactive chemicals. One of these organisms is Caulerpa racemosa, a type of green algae known as green seaweed, seagrapes, or green caviar. This organism stands out because it has great promise for use in medicine, especially in the study of cancer. Through the utilization of computational modeling (in silico) and cellular laboratory experiments (in vitro), the chemical components included in the green seaweed C. racemosa were effectively analyzed, uncovering its capability to treat non-small cell lung cancer (NSCLC). The study specifically emphasized blocking SRC, STAT3, PIK3CA, MAPK1, EGFR, and JAK1 using molecular docking and in vitro. These proteins play a crucial role in the EGFR Tyrosine Kinase Inhibitor Resistance pathway in NSCLC. The chemical Caulersin (C2) included in C. racemosa extract (CRE) has been identified as a potent and effective agent in fighting against non-small cell lung cancer (NSCLC), both in silico and in vitro. CRE and C2 showed a level of inhibition similar to that of osimertinib (positive control/NSCLC drug).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Caulerpa , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Caulerpa/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Alga Marinha/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Receptores ErbB/antagonistas & inibidores , Acrilamidas/farmacologia , Acrilamidas/química
3.
Heliyon ; 10(11): e32008, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882318

RESUMO

Asthma remains a significant global health challenge, demanding innovative approaches to treatment. Traditional medicine has a rich history of using natural products to alleviate asthmatic symptoms. However, transitioning from these traditional remedies to modern drug discovery approaches has provided fresh insights into the mechanisms and effectiveness of these natural products. This study provides our comprehensive review, which examines the current state of knowledge in the treatment of asthma. It delves into the mechanisms through which natural products ameliorate asthma symptoms, and it discusses their potential in the development of novel therapeutic interventions. Our analysis reveals that natural products, traditionally employed for asthma relief, exhibit diverse mechanisms of action. These include anti-inflammatory, bronchodilatory, immunomodulatory effects, and reducing gene expression. In the context of modern drug discovery, these natural compounds serve as valuable candidates for the development of novel asthma therapies. The transition from traditional remedies to modern drug discovery represents a promising avenue for asthma treatment. Our review highlights the substantial efficacy of natural products in managing asthma symptoms, underpinned by well-defined mechanisms of action. By bridging the gap between traditional and contemporary approaches, we contribute to the growing body of knowledge in the field, emphasizing the potential of natural products in shaping the future of asthma therapy.

4.
Antioxidants (Basel) ; 13(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38929071

RESUMO

Breast cancer presents a significant global health challenge with rising incidence rates worldwide. Despite current efforts, it remains inadequately controlled. Functional foods, notably tempeh, have emerged as promising candidates for breast cancer prevention and treatment due to bioactive peptides and isoflavones exhibiting potential anticancer properties by serving as antioxidants, inducing apoptosis, and inhibiting cancer cell proliferation. This study integrates pharmacoinformatics and cellular investigations (i.e., a multifaceted approach) to elucidate the antioxidative and anti-breast cancer properties of tempeh-derived isoflavones. Methodologies encompass metabolomic profiling, in silico analysis, antioxidant assays, and in vitro experiments. Daidzein and genistein exhibited potential therapeutic options for breast cancer treatment and as antioxidant agents. In vitro studies also supported their efficacy against breast cancer and their ability to scavenge radicals, particularly in soy-based tempeh powder (SBT-P) and its isoflavone derivatives. Results have demonstrated a significant downregulation of breast cancer signaling proteins and increased expression of miR-7-5p, a microRNA with tumor-suppressive properties. Notably, the LD50 values of SBT-P and its derivatives on normal breast cell lines indicate their potential safety, with minimal cytotoxic effects on MCF-10A cells compared to control groups. The study underscores the favorable potential of SBT-P as a safe therapeutic option for breast cancer treatment, warranting further clinical exploration.

5.
Nutrients ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794679

RESUMO

Metabolic syndrome is a global health problem. The use of functional foods as dietary components has been increasing. One food of interest is forest onion extract (FOE). This study aimed to investigate the effect of FOE on lipid and glucose metabolism in silico and in vitro using the 3T3-L1 mouse cell line. This was a comprehensive study that used a multi-modal computational network pharmacology analysis and molecular docking in silico and 3T3-L1 mouse cells in vitro. The phytochemical components of FOE were analyzed using untargeted ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Next, an in silico analysis was performed to determine FOE's bioactive compounds, and a toxicity analysis, protein target identification, network pharmacology, and molecular docking were carried out. FOE's effect on pancreatic lipase, α-glucosidase, and α-amylase inhibition was determined. Finally, we determined its effect on lipid accumulation and MAPK8, PPARG, HMGCR, CPT-1, and GLP1 expression in the preadipocyte 3T3-L1 mouse cell line. We showed that the potential metabolites targeted glucose and lipid metabolism in silico and that FOE inhibited pancreatic lipase levels, α-glucosidase, and α-amylase in vitro. Furthermore, FOE significantly (p < 0.05) inhibits targeted protein expressions of MAPK8, PPARG, HMGCR, CPT-1, and GLP-1 in vitro in 3T3-L1 mouse cells in a dose-dependent manner. FOE contains several metabolites that reduce pancreatic lipase levels, α-glucosidase, α-amylase, and targeted proteins associated with lipid and glucose metabolism in vitro.


Assuntos
Células 3T3-L1 , Metabolismo dos Lipídeos , Síndrome Metabólica , Simulação de Acoplamento Molecular , Cebolas , Compostos Fitoquímicos , Extratos Vegetais , Animais , Camundongos , Síndrome Metabólica/tratamento farmacológico , Cebolas/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Alimento Funcional , Lipase/metabolismo , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Glucose/metabolismo , Farmacologia em Rede , PPAR gama/metabolismo , Espectrometria de Massas em Tandem , alfa-Glucosidases/metabolismo , Simulação por Computador
6.
Phytother Res ; 38(6): 3146-3168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616386

RESUMO

Hypertension, or high blood pressure (BP), is a complex disease influenced by various risk factors. It is characterized by persistent elevation of BP levels, typically exceeding 140/90 mmHg. Endothelial dysfunction and reduced nitric oxide (NO) bioavailability play crucial roles in hypertension development. L-NG-nitro arginine methyl ester (L-NAME), an analog of L-arginine, inhibits endothelial NO synthase (eNOS) enzymes, leading to decreased NO production and increased BP. Animal models exposed to L-NAME manifest hypertension, making it a useful design for studying the hypertension condition. Natural products have gained interest as alternative approaches for managing hypertension. Flavonoids, abundant in fruits, vegetables, and other plant sources, have potential cardiovascular benefits, including antihypertensive effects. Flavonoids have been extensively studied in cell cultures, animal models, and, to lesser extent, in human trials to evaluate their effectiveness against L-NAME-induced hypertension. This comprehensive review summarizes the antihypertensive activity of specific flavonoids, including quercetin, luteolin, rutin, troxerutin, apigenin, and chrysin, in L-NAME-induced hypertension models. Flavonoids possess antioxidant properties that mitigate oxidative stress, a major contributor to endothelial dysfunction and hypertension. They enhance endothelial function by promoting NO bioavailability, vasodilation, and the preservation of vascular homeostasis. Flavonoids also modulate vasoactive factors involved in BP regulation, such as angiotensin-converting enzyme (ACE) and endothelin-1. Moreover, they exhibit anti-inflammatory effects, attenuating inflammation-mediated hypertension. This review provides compelling evidence for the antihypertensive potential of flavonoids against L-NAME-induced hypertension. Their multifaceted mechanisms of action suggest their ability to target multiple pathways involved in hypertension development. Nonetheless, the reviewed studies contribute to the evidence supporting the useful of flavonoids for hypertension prevention and treatment. In conclusion, flavonoids represent a promising class of natural compounds for combating hypertension. This comprehensive review serves as a valuable resource summarizing the current knowledge on the antihypertensive effects of specific flavonoids, facilitating further investigation and guiding the development of novel therapeutic strategies for hypertension management.


Assuntos
Anti-Hipertensivos , Flavonoides , Hipertensão , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Flavonoides/farmacologia , Flavonoides/química , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Animais , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos
7.
Nutrients ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674810

RESUMO

Food security, food sustainability, and malnutrition represent critical global challenges. Th urgency of comprehensive action is evident in the need for research collaboration between the food industry, agriculture, public health, and nutrition. This article highlights the role of philanthropy, of a non-profit organization, in supporting research and development and filling financial gaps. The article also explores the interplay of nutrition, agriculture, and government and policy, positioning philanthropy as a catalyst for transformative change and advocating for collaborative efforts to comprehensively address global food challenges. In addition, the discussion also underscores the ethical complexities surrounding charitable food aid, especially in terms of the dignity and autonomy of its recipients. The paper concludes by proposing future directions and implications, advocating for diversified intervention portfolios and collaborative efforts involving governments, businesses, and local communities. Apart from that, the importance of answering and alleviating ethical dilemmas related to food charity assistance needs to be a concern for future studies related to philanthropy because of the significant challenges faced by the contemporary food system, which include food security, health, and nutritional sustainability.


Assuntos
Agricultura , Obtenção de Fundos , Humanos , Agricultura/ética , Obtenção de Fundos/ética , Abastecimento de Alimentos , Política Nutricional , Segurança Alimentar , Instituições de Caridade , Assistência Alimentar/ética
8.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542928

RESUMO

Diabetes, particularly type 2 diabetes (T2D), is the main component of metabolic syndrome. It is highly prevalent and has drastically increased with sedentary lifestyles, notably behaviors linked to ease of access and minimal physical activity. Central to this condition is insulin, which plays a pivotal role in regulating glucose levels in the body by aiding glucose uptake and storage in cells, and what happens to diabetes? In diabetes, there is a disruption and malfunction in insulin regulation. Despite numerous efforts, effectively addressing diabetes remains a challenge. This article explores the potential of photoactivatable drugs in diabetes treatment, with a focus on light-activated insulin. We discuss its advantages and significant implications. This article is expected to enrich the existing literature substantially, offering a comprehensive analysis of potential strategies for improving diabetes management. With its minimal physical intrusion, light-activated insulin promises to improve patient comfort and treatment adherence. It offers precise regulation and localized impact, potentially mitigating the risks associated with conventional diabetes treatments. Additionally, light-activated insulin is capable of explicitly targeting RNA and epigenetic factors. This innovative approach may pave the way for more personalized and effective diabetes treatments, addressing not only the symptoms but also the underlying biological causes of the disease. The advancement of light-activated insulin could revolutionize diabetes management. This study represents a pioneering introduction to this novel modality for diabetes management.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Insulina/metabolismo , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico
9.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474594

RESUMO

Enhalus arcoides is a highly beneficial type of seagrass. Prior studies have presented proof of the bioactivity of E. acoroides, suggesting its potential to combat cancer. Therefore, this study aims to delve deeper into E. acoroides bioactive molecule profiles and their direct biological anticancer activities potentials through the combination of in-silico and in-vitro studies. This study conducted metabolite profile analysis on E. acoroides utilizing HPLC-ESI-HRMS/MS analysis. Two extraction techniques, ethanol and hexane, were employed for the extraction process. Furthermore, the in-silico study was conducted using molecular docking simulations on the HER2, EGFR tyrosine kinase and HIF-1α protein receptor. Afterward, the antioxidant activity of E. acoroides metabolites was examined to ABTS, and the antiproliferative activity was tested using an MTT assay. An in-silico study revealed its ability to combat breast cancer by inhibiting the HER2/EGFR/HIF-1α pathway through molecular docking. In addition, the MTT assay demonstrated that higher dosages of metabolites from E. acoroides increased the effectiveness of toxicity against cancer cell lines. Additionally, the study demonstrated that the metabolites possess the ability to function as potent antioxidants, effectively inhibiting a series of carcinogenic mechanisms. Ultimately, this study showed a new approach to unveiling the E. acoroides metabolites' anticancer activity through inhibiting HER2/EGFR/HIF-1α receptors, with great cytotoxicity and a potent antioxidant property to prevent a carcinogenic cascade.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Simulação de Acoplamento Molecular , Etanol , Receptores ErbB
11.
Molecules ; 28(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894516

RESUMO

Coffee became a beverage that was in demand in the world and consequently produced millions of tons of coffee byproducts namely coffee silverskin (CS). Unutilized CS will be waste and cause environmental pollution such as greenhouse gas emissions, landfill waste, and groundwater contamination. This is a research concern at this time, although many studies have been conducted to find newer applications of CS, exploration of its benefits in the health sector is still limited. Therefore, exploring the benefits of CS to prevent or delay aging will be very interesting to develop in functional food industry technology. Therefore, this study aims to report profiling metabolites or phytochemicals, biological activities in terms of antioxidant activity, and potential anti-aging of CS via molecular docking simulation and in vitro modulation of the mTOR/AMPK/SIRT1 pathway. Something new has been obtained from this work, the profile of phytocompounds, and biological activities both in molecular docking simulation and in vitro studies. Some of the compounds observed in Robusta CS extract (rCSE) such as Epicatechin, Kaempferol, and Quercitrin, and Arabica CS extract (aCSE) such as (+)-Catechin dan Naringin have promising potential as inhibitors of iNOS, mTOR, and HIF-1α via molecular docking simulation. Interestingly, the in vitro biological activity assay of antioxidant and anti-aging activity, rCSE showed the same promising potential as the results of a molecular docking simulation. More interestingly, AMPK/SIRT1/mTOR expressions are well modulated by rCSE compared to aCSE significantly (p < 0.05). This makes the rCSE have promising biological activity as a candidate for functional food development and/or treatment agent in combating free radicals that cause the aging process. In vivo studies and human trials are certainly needed to see the further efficacy of the rCSE in the future.


Assuntos
Alimento Funcional , Sirtuína 1 , Humanos , Proteínas Quinases Ativadas por AMP , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antioxidantes/química , Envelhecimento , Serina-Treonina Quinases TOR
12.
Nutrients ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764670

RESUMO

Metabolic dysfunction, which includes intra-abdominal adiposity, glucose intolerance, insulin resistance, dyslipidemia, and hypertension, manifests into metabolic syndrome and related diseases. Therefore, the discovery of new therapies in the fight against metabolic syndrome is very challenging. This study aims to reveal the existence of an edible bird nest (EBN) as a functional food candidate that may be a new alternative in fighting metabolic syndrome. The study included three approaches: in silico molecular docking simulation, in vitro, and in vivo in rats fed on cholesterol- and fat-enriched diets. Four terpenoids of Bakuchiol, Curculigosaponin A, Dehydrolindestrenolide, and 1-methyl-3-(1-methyl-ethyl)-benzene in EBN have been identified through LCMS/MS-QTOF. In molecular docking simulations, Bakuchiol and Dehydrolindestrenolide are considered very potent because they have higher inhibitory power on the four receptors (iNOS, ROS1 kinase, FTO, and lipase) than standard drugs. In vitro tests also provide insight into the antioxidant, antidiabetic, and antiobesity activities of EBN, which is quite feasible due to the smaller EC50 value of EBN compared to standard drugs. Interestingly, in vivo studies also showed significant improvements (p < 0.05) in the lipid profile, blood glucose, enzymatic levels, and inflammatory biomarkers in rats given high-dose dietary supplementation of EBN. More interestingly, high-dose dietary supplementation of EBN upregulates PGC-1α and downregulates HMG-CoA reductase. Comprehensively, it has been revealed that EBN can be novel functional foods for combating metabolic syndrome.

13.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627550

RESUMO

Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1-5' AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut microbiota modulation. This is a follow-up study that used SPs from previous in vitro studies, consisting of 2,3-di-O-methyl-1,4,5-tri-O-acetylarabinitol, 2,3,4,6-tetra-O-methyl-D-mannopyranose, and type B ulvanobiuronicacid 3-sulfate. A total of forty rats were randomly divided into four treatment groups: Group A received a standard diet; Group B was provided with a diet enriched in cholesterol and fat (CFED); and Groups C and D were given the CFED along with ad libitum water, and daily oral supplementation of 65 or 130 mg/kg of body weight (BW) of SPCr, respectively. Group D showed the lowest low-density lipoprotein, triglyceride, total cholesterol, and blood glucose levels, and the highest HDL level compared to the other groups in this study. These results in the group fed high-dose SPCr demonstrated a significant effect compared to the group fed low-dose SPCr (p < 0.0001), as well as in total cholesterol and blood glucose (p < 0.05). Supplementation with SPCr was also observed to have an upregulation effect on peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, interleukin 10, Sirtuin 1, DDAH-II, superoxide dismutase (SOD) cardio, and AMPK, which was also followed by a downregulation of PRMT-1, TNF-α, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, and mTOR. Interestingly, gut microbiota modulation was also observed; feeding the rats with a cholesterol-enriched diet shifted the gut microbiota composition toward the Firmicutes level, lowered the Bacteroidetes level, and increased the Firmicutes level. A dose of 130 mg/kg BW of SPCr is the recommended dose, and investigation still needs to be continued in clinical trials with humans to see its efficacy at an advanced level.

14.
Nutrients ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447274

RESUMO

Diabetes and obesity are chronic diseases that are a burden to low- and middle-income countries. We conducted this systematic review to understand gene-diet interactions affecting the Southeast Asian population's risk of obesity and diabetes. The literature search was performed on Google Scholar and MEDLINE (PubMed) search engines independently by four reviewers who evaluated the eligibility of articles based on inclusion criteria. Out of 19,031 articles, 20 articles examining gene-diet interactions on obesity and/or diabetes-related traits met the inclusion criteria. Three (Malaysia, Indonesia, and Singapore) out of eleven Association of Southeast Asian Nations (ASEAN) countries have conducted studies on gene-diet interactions on obesity and diabetes. From the 20 selected articles, the most common interactions were observed between macronutrients and genetic risk score (GRS) on metabolic disease-related traits in the Malay, Chinese, and Indian ethnicities. Overall, we identified 29 significant gene-diet interactions in the Southeast Asian population. The results of this systematic review demonstrate ethnic-specific gene-nutrient interactions on metabolic-disease-related traits in the Southeast Asian population. This is the first systematic review to explore gene-diet interactions on obesity and diabetes in the Southeast Asian population and further research using larger sample sizes is required for better understanding and framing nutrigenetic approaches for personalized nutrition.


Assuntos
Diabetes Mellitus , Dieta , Obesidade , Humanos , Sudeste Asiático , Dieta/efeitos adversos , Obesidade/epidemiologia , Obesidade/genética , Singapura/epidemiologia , População do Sudeste Asiático , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética
16.
Clin Nutr ESPEN ; 56: 81-82, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37344087

RESUMO

Potential studies and evidence regarding nutrient nanoencapsulation combined with emulsion-based delivery systems are relatively limited. Therefore, for the importance issue of health vision, with this critical opinion to the editor is scientifically important to invite worldwide researchers to raise their concern for clinical research and the development of plant-based lutein nanoencapsulation in staple foods in alleviating nutritional problems for the eyes, which has not been reported before. This is in line with the WHO World Report which aimed to overcome the challenge regarding vision and galvanizing action, one of which is through innovation and research. With the hypothesis that, through this opinion will increase the awareness of scientists to improve clinical studies on the stability and bioaccessibility of lutein for health vision concern. As our hypothesis and objectives, we hope that this critical short opinion to the editor will assist efforts to reduce the burden of eye conditions and vision loss to achieve the Sustainable Development Goals (SDGs), particularly SDG 3.8 on universal health coverage through lutein-plant based nanoencapsulation clinical studies by worldwide researchers. Finally, it is very important and needed an effort to improve clinical studies focus on the stability and bioaccessibility of lutein for health vision via lutein-plant based nanoencapsulation approaches. Moreover, the benefit of lutein supplementation for the health vision might be limited by its bioaccessibility and bioavailability. Future studies and approaches should employ strategies that could overcome the foregoing limitations, of which is through nanoencapsulation approach. Something new has been synthesized in this work, "Because, every human eye, is the eye of the world".


Assuntos
Composição de Medicamentos , Luteína , Nanotecnologia , Humanos
17.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299007

RESUMO

Green algae are natural bioresources that have excellent bioactive potential, partly due to sulfated polysaccharides (SPs) which are still rarely explored for their biological activities. There is currently an urgent need for studies exploring the anticancer biological activity of SPs extracted from two Indonesian ulvophyte green algae: the sulfated polysaccharide of Caulerpa racemosa (SPCr) and the sulfated polysaccharide of Caulerpa lentillifera (SPCl). The method of isolating SPs and their assessment of biological activities in this study were based on previous and similar studies. The highest yield sulfate/total sugar ratio was presented by SPCr than that of SPCl. Overall, SPCr exhibits a strong antioxidant activity, as indicated by smaller EC50 values obtained from a series of antioxidant activity assays compared to the EC50 values of Trolox (control). As an anti-obesity and antidiabetic, the overall EC50 value of both SPs was close to the EC50 of the positive control (orlistat and acarbose). Even more interesting was that SPCl displayed wide-ranging anticancer effects on colorectal, hepatoma, breast cancer cell lines, and leukemia. Finally, this study reveals new insights in that SPs from two Indonesian green algae have the potential to be promising nutraceuticals as novel antioxidative actors, and to be able to fight obesity, diabetes, and even cancer.


Assuntos
Caulerpa , Clorófitas , Sulfatos , Antioxidantes/farmacologia , Polissacarídeos/farmacologia
18.
Nutrients ; 15(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299562

RESUMO

To date, there has been no recent opinion that explores tempeh as a functional food that can improve sports performance. Hence, this opinion article aims to elaborate on recent findings on the potential effect on sports performance of soy-based tempeh. This opinion paper presents updated evidence based on literature reviews about soy-based tempeh and its relationship with sports performance. The paraprobiotic role of Lactobacillus gasseri for athletes has been found to restore fatigue and reduce anxiety. This is achieved by increasing protein synthesis activity in eukaryotic initiation factor-2 (EIF2) signaling known as an adaptive pathway for integrated stress response. In addition, these paraprobiotics prevent down-regulation associated with the oxidative phosphorylation gene, thereby contributing to the maintenance of mitochondrial function and recovery from fatigue. The authors believe that this opinion article will encourage researchers to continue to evolve soybean-based tempeh food products and increase the performance of athletes by consuming soy-based foods.


Assuntos
Desempenho Atlético , Alimentos de Soja , Humanos , Alimento Funcional , Fermentação , Glycine max/metabolismo
19.
Probiotics Antimicrob Proteins ; 15(4): 1049-1061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349622

RESUMO

Heart failure (HF) is a global pandemic with increasing prevalence and mortality rates annually. Its main cause is myocardial infarction (MI), followed by rapid cardiac remodeling. Several clinical studies have shown that probiotics can improve the quality of life and reduce cardiovascular risk factors. This systematic review and meta-analysis aimed to investigate the effectiveness of probiotics in preventing HF caused by a MI according to a prospectively registered protocol (PROSPERO: CRD42023388870). Four independent evaluators independently extracted the data using predefined extraction forms and evaluated the eligibility and accuracy of the studies. A total of six studies consisting of 366 participants were included in the systematic review. Probiotics are not significant in intervening left ventricular ejection fraction (LVEF) and high-sensitivity C-reactive protein (hs-CRP) when compared between the intervention group and the control group due to inadequate studies supporting its efficacy. Among sarcopenia indexes, hand grip strength (HGS) showed robust correlations with the Wnt biomarkers (p < 0.05), improved short physical performance battery (SPPB) scores were also strongly correlated with Dickkopf-related protein (Dkk)-3, followed by Dkk-1, and sterol regulatory element-binding protein 1 (SREBP-1) (p < 0.05). The probiotic group showed improvement in total cholesterol (p = 0.01) and uric acid (p = 0.014) compared to the baseline. Finally, probiotic supplements may be an anti-inflammatory, antioxidant, metabolic, and intestinal microbiota modulator in cardiac remodeling conditions. Probiotics have great potential to attenuate cardiac remodeling in HF or post-MI patients while also enhancing the Wnt signaling pathway which can improve sarcopenia under such conditions.


Assuntos
Microbioma Gastrointestinal , Probióticos , Sarcopenia , Humanos , Antioxidantes , Qualidade de Vida , Volume Sistólico , Força da Mão , Remodelação Ventricular , Função Ventricular Esquerda , Ensaios Clínicos Controlados Aleatórios como Assunto , Anti-Inflamatórios
20.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050034

RESUMO

Green alga Caulerpa racemosa is an underexploited species of macroalgae, even though it is characterized by a green color that indicates an abundance of bioactive pigments, such as chlorophyll and possibly xanthophyll. Unlike chlorophyll, which has been well explored, the composition of the carotenoids of C. racemosa and its biological activities have not been reported. Therefore, this study aims to look at the carotenoid profile and composition of C. racemose and determine their biological activities, which include antidiabetic, anti-obesity, anti-oxidative, anti-inflammatory, and cytotoxicity in vitro. The detected carotenoids were all xanthophylls, which included fucoxanthin, lutein, astaxanthin, canthaxanthin, zeaxanthin, ß-carotene, and ß-cryptoxanthin based on orbitrap-mass spectrometry (MS) and a rapid ultra-high performance liquid chromatography (UHPLC) diode array detector. Of the seven carotenoids observed, it should be highlighted that ß-carotene and canthaxanthin were the two most dominant carotenoids present in C. racemosa. Interestingly, the carotenoid extract of C. racemosa has good biological activity in inhibiting α-glucosidase, α-amylase, DPPH and ABTS, and the TNF-α and mTOR, as well as upregulating the AMPK, which makes it a drug candidate or functional antidiabetic food, a very promising anti-obesity and anti-inflammatory. More interestingly, the cytotoxicity value of the carotenoid extract of C. racemosa shows a level of safety in normal cells, which makes it a potential for the further development of nutraceuticals and pharmaceuticals.


Assuntos
Caulerpa , Clorófitas , Carotenoides/química , Antioxidantes/química , beta Caroteno/química , Cantaxantina , Hipoglicemiantes/farmacologia , Luteína/química , Zeaxantinas , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...