Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 230370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577209

RESUMO

There is increasing recognition of the potential pleiotropic effects of melanin pigmentation, particularly on immunity, with reports of variation in haemoparasite infection intensity and immune responses between the morphs of colour-polymorphic bird species. In a population of the black sparrowhawk (Accipiter melanoleucus) in western South Africa, light morphs have a higher haemoparasite infection intensity, but no physiological effects of this are apparent. Here, we investigate the possible effects of haemoparasite infection on telomere length in this species and explore whether relative telomere length is associated with either plumage morph or sex. Using quantitative polymerase chain reaction analysis, we confirmed that dark morphs had a lower haemoparasite infection intensity than light morphs. However, we found no differences in telomere length associated with either the haemoparasite infection status or morph in adults, although males have longer telomeres than females. While differences in haemoparasite intensity between morphs are consistent with pleiotropic effects of melanin pigmentation in the black sparrowhawk, we found no evidence that telomere length was associated with haemoparasite infection. Further work is needed to investigate the implications of possible pleiotropic effects of plumage morph and their potential role in the maintenance of colour polymorphism in this species.

2.
Ecol Appl ; 33(3): e2809, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36691259

RESUMO

The rapid development of wind energy in southern Africa represents an additional threat to the already fragile populations of African vultures. The distribution of the vulnerable Cape Vulture Gyps coprotheres overlaps considerably with wind energy development areas in South Africa, creating conflicts that can hinder both vulture conservation and sustainable energy development. To help address this conflict and aid in the safe placement of wind energy facilities, we map the utilization distribution (UD) of this species across its distributional range. Using tracking data from 68 Cape Vultures collected over the last 20 years, we develop a spatially explicit habitat use model to estimate the expected UDs around known colonies. Scaling the UDs by the number of vultures expected to use each of the colonies, we estimate the Cape Vulture population utilization distribution (PUD) and determine its exposure to wind farm impacts. To complement our results, we model the probability of a vulture flying within the rotor sweep area of a wind turbine throughout the species range and use this to identify areas that are particularly prone to collisions. Overall, our estimated PUD correlates well with reporting rates of the species from the Southern African Bird Atlas Project, currently used to assess potential overlap between Cape Vultures and wind energy developments, but it adds important benefits, such as providing a spatial gradient of activity estimates over the entire species range. We illustrate the application of our maps by analyzing the exposure of Cape Vultures in the Renewable Energy Development Zones (REDZs) in South Africa. This application is a scalable procedure that can be applied at different planning phases, from strategic, nationwide planning to project-level assessments.


Assuntos
Falconiformes , Animais , Aves , África do Sul , Probabilidade , Ecossistema
3.
Sci Rep ; 7(1): 9161, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831050

RESUMO

Colour polymorphism may be maintained within a population by disruptive-selection. One hypothesis proposes that different morphs are adapted to different ambient light conditions, with lighter morphs having a selective advantage in bright conditions and darker morphs having advantages in darker conditions. The mechanism for this advantage is proposed to be through enhanced crypsis via background-matching. We explore this hypothesis in a polymorphic raptor, the black sparrowhawk Accipiter melanoleucus, which exhibits a discrete dark and white-morph. We use GPS-tracking data to contrast the foraging behaviour and habitat selection of morphs. As predicted, we found that light-levels influenced foraging behaviour in different ways for morphs: Dark-morphs showed a decrease in foraging with increasing light-levels; whereas no relationship was found for white-morphs. Furthermore, we found differential-degrees of habitat selection, with dark-morphs selecting more enclosed habitats compared to white-morphs. This suggests that different morphs may be better adapted to foraging under different light-conditions, potentially playing a role in maintaining colour polymorphism in this species. Our results may also help explain why dark-morphs predominate in this study region, which experiences high rainfall and lower light-levels during the breeding-period. This study suggests that avian morphs may allocate/partition foraging activity by weather conditions/habitat, which maximise their concealment from prey.

4.
Ecol Lett ; 19(6): 679-86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27132885

RESUMO

Detectability of different colour morphs under varying light conditions has been proposed as an important driver in the maintenance of colour polymorphism via disruptive selection. To date, no studies have tested whether different morphs have selective advantages under differing light conditions. We tested this hypothesis in the black sparrowhawk, a polymorphic raptor exhibiting a discrete white and dark morph, and found that prey provisioning rates differ between the morphs depending on light condition. Dark morphs delivered more prey in lower light conditions, while white morphs provided more prey in brighter conditions. We found support for the role of breeding season light level in explaining the clinal pattern of variation in morph ratio across the species range throughout South Africa. Our results provide the first empirical evidence supporting the hypothesis that polymorphism in a species, and the spatial structuring of morphs across its distribution, may be driven by differential selective advantage via improved crypsis, under varying light conditions.


Assuntos
Comportamento Apetitivo/fisiologia , Luz , Pigmentação , Aves Predatórias/fisiologia , Animais , Masculino , Fenótipo , Polimorfismo Genético , África do Sul , Análise Espacial
5.
J Anim Ecol ; 85(4): 1043-55, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26990283

RESUMO

From an evolutionary perspective, recruitment into the breeding population represents one of the most important life-history stages and ultimately determines the effective population size. In order to contribute to the next generation, offspring must survive to sexual maturity, secure a territory and find a mate. In this study, we explore factors influencing both offspring survival and their subsequent recruitment into the local breeding population in a long-lived urban raptor, the black sparrowhawk (Accipiter melanoleucus). Adult black sparrowhawks show discrete colour polymorphism (dark and light morphs), and in South Africa, morphs are distributed clinally with the highest proportion of dark morphs (c.75%) present in our study population on the Cape Peninsula. Parental morph was associated with both survival and recruitment. For survival, parental morph combination was important - with young produced by pairs of contrasting morphs having higher survival rates than young fledged from like-pairs. The association between recruitment and morph was more complex; with an interaction between male morph and breeding time, whereby recruitment of offspring from dark morph fathers was more likely when fledging earlier in the season. The opposite relationship was found for light morph fathers, with their offspring more likely to be recruited if fledged later in the season. This interaction may be due to differential morph-specific hunting success of fathers (males contribute most food provisioning), linked to background matching and crypsis in different weather conditions. Dark morph males may hunt more successfully in rainier and cloudier conditions, which occur more frequently earlier in the breeding season, and light morph males may be more successful later on, when weather conditions become increasingly brighter and drier. Our results reveal a complex situation whereby the family morph combination influences survival, and the father morphs specifically recruitment, revealing morph-specific benefits dependent on the timing of breeding. These empirical data are among the first to support the idea that differential fitness consequence of morph combination may explain balanced polymorphism in a vertebrate population.


Assuntos
Falcões/fisiologia , Longevidade , Pigmentação , Animais , Feminino , Falcões/genética , Masculino , Polimorfismo Genético , Dinâmica Populacional , Estações do Ano , África do Sul
6.
PLoS One ; 8(12): e81607, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391707

RESUMO

Recent research suggests that genes coding for melanin based colouration may have pleiotropic properties, in particular conveying raised immune function. Thus adaptive function of polymorphism may be associated with parasite resistance. The black sparrowhawk Accipiter melanoleucus is a polymorphic raptor with two morphs. Over most of its range the light morph is commonest, however within the recently colonised Western Cape of South Africa the dark morph predominates. The species breeds in winter throughout South Africa, however unlike in the rest of the species' South African range, the Western Cape experiences a winter rainfall regime, where arthropod vectors which transmit haematozoan parasites may be more abundant. We hypothesise that the higher frequency of dark morph birds in this region may be due to their improved parasite resistance, which enables them to cope with higher parasite pressure. If so, we predict that dark morph black sparrowhawks would have lower parasite burdens than light morph birds. Within our population the prevalence of the two most common haematozoan parasites was high, with 72% of adults infected with Haemoproteus nisi and 59% of adults infected with Leucocytozoon toddi. We found no difference in prevalence for either parasite between adult morphs, or between chicks of different parental morphs. However, within adults infected with H. nisi, infection intensity was significantly higher in light morphs than dark morphs. This suggests that dark morphs have lower parasite loads than light morphs due to resistance rather than morph-specific habitat exploitation. Greater resistance to Haemoproteus parasites may therefore be one of the mechanisms through which dark morph black sparrowhawks have a selective advantage in this region and may explain why they are most common in our study area. In other regions, the cost to benefit ratio may be in favour of the light morph, where parasites are less abundant or virulent.


Assuntos
Haemosporida/patogenicidade , Falcões/fisiologia , Falcões/parasitologia , Pigmentação/fisiologia , Adaptação Fisiológica , Fatores Etários , Animais , Evolução Biológica , Doenças das Aves/genética , Doenças das Aves/parasitologia , Doenças das Aves/fisiopatologia , Feminino , Falcões/genética , Masculino , Carga Parasitária , Pigmentação/genética , Polimorfismo Genético , Infecções Protozoárias em Animais/genética , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/fisiopatologia , Caracteres Sexuais , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...