RESUMO
Homologous recombination (HR) uses a homologous template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. During homology search, Rad51 nucleoprotein filaments probe and interact with dsDNA, forming the synaptic complex that is stabilized on a homologous sequence. Strand intertwining leads to the formation of a displacement-loop (D-loop). In yeast, Rad54 is essential for HR in vivo and required for D-loop formation in vitro, but its exact role remains to be fully elucidated. Using electron microscopy to visualize the DNA-protein complexes, here we find that Rad54 is crucial for Rad51-mediated synaptic complex formation and homology search. The Rad54-K341R ATPase-deficient mutant protein promotes formation of synaptic complexes but not D-loops and leads to the accumulation of stable heterologous associations, suggesting that the Rad54 ATPase is involved in preventing non-productive intermediates. We propose that Rad51/Rad54 form a functional unit operating in homology search, synaptic complex and D-loop formation.
Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Substâncias Macromoleculares/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/química , DNA/ultraestrutura , DNA Helicases/química , DNA Helicases/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Recombinação Homóloga , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica , Mutação , Ligação Proteica , Rad51 Recombinase/química , Rad51 Recombinase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are powerful tools to study the behavior of various actors in homologous recombination including molecular motors such as recombinases and helicases/translocases. Here we present specific approaches developed in terms of sample preparation and imaging methods to contribute to the understanding of homologous recombination process and its regulation focusing on the interplay between recombinases and other related proteins such as mediators or antirecombinase actors.Homologous recombination (HR) is a high-fidelity DNA repair pathway since it uses a homologous DNA as template. Recombinases such as RecA in bacteria, RadA in archaea, and Rad51 in eukaryotes are key proteins in the HR pathway: HR is initiated with formation of an ssDNA overhang on which recombinases polymerize and form a dynamic active nucleoprotein filament able to search for homology and to exchange DNA strand in an ATP-dependent manner. We provide practical methods to analyze presynaptic filament formation on ssDNA, its composition and regulation in presence of mediator partners, antirecombinase activity of translocase, and chromatin remodeling events.