Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399662

RESUMO

Transfusion of bacterially contaminated platelets, although rare, is still a major cause of mortality and morbidity despite the introduction of many methods to limit this over the past 20 years. The methods used include improved donor skin disinfection, diversion of the first part of donations, use of apheresis platelet units rather than whole-blood derived pools, primary and secondary testing by culture or rapid test, and use of pathogen reduction. Primary culture has been in use the US since 2004, using culture 24 h after collection of volumes of 4-8 mL from apheresis collections and whole-blood derived pools inoculated into aerobic culture bottles, with limited use of secondary testing by culture or rapid test to extend shelf-life from 5 to 7 days. Primary culture was introduced in the UK in 2011 using a "large-volume, delayed sampling" (LVDS) protocol requiring culture 36-48 h after collection of volumes of 16 mL from split apheresis units and whole-blood derived pools, inoculated into aerobic and anaerobic culture bottles (8 mL each), with a shelf-life of 7 days. Pathogen reduction using amotosalen has been in use in Europe since 2002, and was approved for use in the US in 2014. In the US, recent FDA guidance, effective October 2021, recommended several strategies to limit bacterial contamination of platelet products, including pathogen reduction, variants of the UK LVDS method and several two-step strategies, with shelf-life ranging from 3 to 7 days. The issues associated with bacterial contamination and these strategies are discussed in this review.

2.
Front Plant Sci ; 11: 592730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193550

RESUMO

MaizeMine is the data mining resource of the Maize Genetics and Genome Database (MaizeGDB; http://maizemine.maizegdb.org). It enables researchers to create and export customized annotation datasets that can be merged with their own research data for use in downstream analyses. MaizeMine uses the InterMine data warehousing system to integrate genomic sequences and gene annotations from the Zea mays B73 RefGen_v3 and B73 RefGen_v4 genome assemblies, Gene Ontology annotations, single nucleotide polymorphisms, protein annotations, homologs, pathways, and precomputed gene expression levels based on RNA-seq data from the Z. mays B73 Gene Expression Atlas. MaizeMine also provides database cross references between genes of alternative gene sets from Gramene and NCBI RefSeq. MaizeMine includes several search tools, including a keyword search, built-in template queries with intuitive search menus, and a QueryBuilder tool for creating custom queries. The Genomic Regions search tool executes queries based on lists of genome coordinates, and supports both the B73 RefGen_v3 and B73 RefGen_v4 assemblies. The List tool allows you to upload identifiers to create custom lists, perform set operations such as unions and intersections, and execute template queries with lists. When used with gene identifiers, the List tool automatically provides gene set enrichment for Gene Ontology (GO) and pathways, with a choice of statistical parameters and background gene sets. With the ability to save query outputs as lists that can be input to new queries, MaizeMine provides limitless possibilities for data integration and meta-analysis.

3.
Nucleic Acids Res ; 48(D1): D676-D681, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647100

RESUMO

The Bovine Genome Database (BGD) (http://bovinegenome.org) has been the key community bovine genomics database for more than a decade. To accommodate the increasing amount and complexity of bovine genomics data, BGD continues to advance its practices in data acquisition, curation, integration and efficient data retrieval. BGD provides tools for genome browsing (JBrowse), genome annotation (Apollo), data mining (BovineMine) and sequence database searching (BLAST). To augment the BGD genome annotation capabilities, we have developed a new Apollo plug-in, called the Locus-Specific Alternate Assembly (LSAA) tool, which enables users to identify and report potential genome assembly errors and structural variants. BGD now hosts both the newest bovine reference genome assembly, ARS-UCD1.2, as well as the previous reference genome, UMD3.1.1, with cross-genome navigation and queries supported in JBrowse and BovineMine, respectively. Other notable enhancements to BovineMine include the incorporation of genomes and gene annotation datasets for non-bovine ruminant species (goat and sheep), support for multiple assemblies per organism in the Regions Search tool, integration of additional ontologies and development of many new template queries. To better serve the research community, we continue to focus on improving existing tools, developing new tools, adding new datasets and encouraging researchers to use these resources.


Assuntos
Bovinos/genética , Biologia Computacional/métodos , Bases de Dados Factuais , Genoma , Algoritmos , Animais , Gráficos por Computador , Mineração de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genômica , Internet , Anotação de Sequência Molecular , RNA-Seq , Valores de Referência , Ruminantes/genética , Alinhamento de Sequência , Software , Interface Usuário-Computador
4.
Methods Mol Biol ; 1757: 211-249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761461

RESUMO

The Bovine Genome Database (BGD; http://bovinegenome.org ) is a web-accessible resource that supports bovine genomics research by providing genome annotation and data mining tools. BovineMine is a tool within BGD that integrates BGD data, including the genome, genes, precomputed gene expression levels and variant consequences, with external data sources that include quantitative trait loci (QTL), orthologues, Gene Ontology, gene interactions, and pathways. BovineMine enables researchers without programming skills to create custom integrated datasets for use in downstream analyses. This chapter describes how to enhance a bovine genomics project using the Bovine Genome Database, with data mining examples demonstrating BovineMine.


Assuntos
Bases de Dados Genéticas , Genoma , Genômica , Navegador , Animais , Bovinos , Biologia Computacional/métodos , Mineração de Dados/métodos , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Metanálise como Assunto , Anotação de Sequência Molecular , Locos de Características Quantitativas , Software , Interface Usuário-Computador
5.
Methods Mol Biol ; 1757: 513-556, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761469

RESUMO

The Hymenoptera Genome Database (HGD; http://hymenopteragenome.org ) is a genome informatics resource for insects of the order Hymenoptera, which includes bees, ants and wasps. HGD provides genome browsers with manual annotation tools (JBrowse/Apollo), BLAST, bulk data download, and a data mining warehouse (HymenopteraMine). This chapter focuses on the use of HymenopteraMine to create annotation data sets that can be exported for use in downstream analyses. HymenopteraMine leverages the InterMine platform to combine genome assemblies and official gene sets with data from OrthoDB, RefSeq, FlyBase, Gene Ontology, UniProt, InterPro, KEGG, Reactome, dbSNP, PubMed, and BioGrid, as well as precomputed gene expression information based on publicly available RNAseq. Built-in template queries provide starting points for data exploration, while the QueryBuilder tool supports construction of complex custom queries. The List Analysis and Genomic Regions search tools execute queries based on uploaded lists of identifiers and genome coordinates, respectively. HymenopteraMine facilitates cross-species data mining based on orthology and supports meta-analyses by tracking identifiers across gene sets and genome assemblies.


Assuntos
Bases de Dados Genéticas , Genoma de Inseto , Genômica , Himenópteros/genética , Animais , Biologia Computacional/métodos , Mineração de Dados , Genômica/métodos , Software , Interface Usuário-Computador , Navegador
6.
Nucleic Acids Res ; 44(D1): D834-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26481361

RESUMO

We report an update of the Bovine Genome Database (BGD) (http://BovineGenome.org). The goal of BGD is to support bovine genomics research by providing genome annotation and data mining tools. We have developed new genome and annotation browsers using JBrowse and WebApollo for two Bos taurus genome assemblies, the reference genome assembly (UMD3.1.1) and the alternate genome assembly (Btau_4.6.1). Annotation tools have been customized to highlight priority genes for annotation, and to aid annotators in selecting gene evidence tracks from 91 tissue specific RNAseq datasets. We have also developed BovineMine, based on the InterMine data warehousing system, to integrate the bovine genome, annotation, QTL, SNP and expression data with external sources of orthology, gene ontology, gene interaction and pathway information. BovineMine provides powerful query building tools, as well as customized query templates, and allows users to analyze and download genome-wide datasets. With BovineMine, bovine researchers can use orthology to leverage the curated gene pathways of model organisms, such as human, mouse and rat. BovineMine will be especially useful for gene ontology and pathway analyses in conjunction with GWAS and QTL studies.


Assuntos
Bovinos/genética , Bases de Dados Genéticas , Genoma , Animais , Bovinos/metabolismo , Mineração de Dados , Expressão Gênica , Humanos , Camundongos , Anotação de Sequência Molecular , Ratos , Software
7.
Nucleic Acids Res ; 44(D1): D793-800, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578564

RESUMO

We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search.


Assuntos
Bases de Dados Genéticas , Genoma de Inseto , Himenópteros/genética , Anotação de Sequência Molecular , Animais , Mineração de Dados , Genômica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...