Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 15(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36990693

RESUMO

Loss-of-function mutations in SLC30A10 induce hereditary manganese (Mn)-induced neuromotor disease in humans. We previously identified SLC30A10 to be a critical Mn efflux transporter that controls physiological brain Mn levels by mediating hepatic and intestinal Mn excretion in adolescence/adulthood. Our studies also revealed that in adulthood, SLC30A10 in the brain regulates brain Mn levels when Mn excretion capacity is overwhelmed (e.g. after Mn exposure). But, the functional role of brain SLC30A10 under physiological conditions is unknown. We hypothesized that, under physiological conditions, brain SLC30A10 may modulate brain Mn levels and Mn neurotoxicity in early postnatal life because body Mn excretion capacity is reduced in this developmental stage. We discovered that Mn levels of pan-neuronal/glial Slc30a10 knockout mice were elevated in specific brain regions (thalamus) during specific stages of early postnatal development (postnatal day 21), but not in adulthood. Furthermore, adolescent or adult pan-neuronal/glial Slc30a10 knockouts exhibited neuromotor deficits. The neuromotor dysfunction of adult pan-neuronal/glial Slc30a10 knockouts was associated with a profound reduction in evoked striatal dopamine release without dopaminergic neurodegeneration or changes in striatal tissue dopamine levels. Put together, our results identify a critical physiological function of brain SLC30A10-SLC30A10 in the brain regulates Mn levels in specific brain regions and periods of early postnatal life, which protects against lasting deficits in neuromotor function and dopaminergic neurotransmission. These findings further suggest that a deficit in dopamine release may be a likely cause of early-life Mn-induced motor disease.


Assuntos
Proteínas de Transporte de Cátions , Manganês , Humanos , Adulto , Animais , Camundongos , Adolescente , Manganês/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transportador 8 de Zinco/genética , Dopamina , Encéfalo/metabolismo , Camundongos Knockout , Transmissão Sináptica
2.
J Nutr ; 150(6): 1360-1369, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32211802

RESUMO

Manganese is an essential metal, but elevated brain Mn concentrations produce a parkinsonian-like movement disorder in adults and fine motor, attentional, cognitive, and intellectual deficits in children. Human Mn neurotoxicity occurs owing to elevated exposure from occupational or environmental sources, defective excretion (e.g., due to cirrhosis), or loss-of-function mutations in the Mn transporters solute carrier family 30 member 10 or solute carrier family 39 member 14. Animal models are essential to study Mn neurotoxicity, but in order to be translationally relevant, such models should utilize environmentally relevant Mn exposure regimens that reproduce changes in brain Mn concentrations and neurological function evident in human patients. Here, we provide guidelines for Mn exposure in mice, rats, nematodes, and zebrafish so that brain Mn concentrations and neurobehavioral sequelae remain directly relatable to the human phenotype.


Assuntos
Modelos Animais de Doenças , Intoxicação por Manganês/fisiopatologia , Manganês/toxicidade , Pesquisa Translacional Biomédica , Animais , Caenorhabditis elegans , Feminino , Humanos , Masculino , Manganês/administração & dosagem , Camundongos , Ratos , Peixe-Zebra
3.
Curr Protoc Toxicol ; 81(1): e86, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31529798

RESUMO

Tissue-specific knockout mice are widely used throughout scientific research. A principle method for generating tissue-specific knockout mice is the Cre-loxP system. Here, we give a detailed description of the steps required to generate and validate tissue-specific knockout mice using the Cre-loxP system. The first protocol describes how to use gene targeting in mouse embryonic stem cells to generate mice with conditional alleles. Subsequent protocols describe how to recover Cre transgenic mice from cryopreserved sperm using in vitro fertilization and present a breeding strategy for obtaining tissue-specific knockouts. Finally, methods are provided for validating the knockout mice using PCR of genomic DNA, reverse-transcription PCR and quantitative reverse-transcription PCR of mRNA, and immunoblot analysis of proteins. © 2019 by John Wiley & Sons, Inc.


Assuntos
Técnicas de Inativação de Genes/métodos , Toxicologia/métodos , Animais , Regulação da Expressão Gênica , Genótipo , Camundongos , Camundongos Knockout , Camundongos Transgênicos
4.
J Biol Chem ; 294(6): 1860-1876, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559290

RESUMO

The essential metal manganese becomes neurotoxic at elevated levels. Yet, the mechanisms by which brain manganese homeostasis is regulated are unclear. Loss-of-function mutations in SLC30A10, a cell surface-localized manganese efflux transporter in the brain and liver, induce familial manganese neurotoxicity. To elucidate the role of SLC30A10 in regulating brain manganese, we compared the phenotypes of whole-body and tissue-specific Slc30a10 knockout mice. Surprisingly, unlike whole-body knockouts, brain manganese levels were unaltered in pan-neuronal/glial Slc30a10 knockouts under basal physiological conditions. Further, although transport into bile is a major route of manganese excretion, manganese levels in the brain, blood, and liver of liver-specific Slc30a10 knockouts were only minimally elevated, suggesting that another organ compensated for loss-of-function in the liver. Additional assays revealed that SLC30A10 was also expressed in the gastrointestinal tract. In differentiated enterocytes, SLC30A10 localized to the apical/luminal domain and transported intracellular manganese to the lumen. Importantly, endoderm-specific knockouts, lacking SLC30A10 in the liver and gastrointestinal tract, had markedly elevated manganese levels in the brain, blood, and liver. Thus, under basal physiological conditions, brain manganese is regulated by activity of SLC30A10 in the liver and gastrointestinal tract, and not the brain or just the liver. Notably, however, brain manganese levels of endoderm-specific knockouts were lower than whole-body knockouts, and only whole-body knockouts exhibited manganese-induced neurobehavioral defects. Moreover, after elevated exposure, pan-neuronal/glial knockouts had higher manganese levels in the basal ganglia and thalamus than controls. Therefore, when manganese levels increase, activity of SLC30A10 in the brain protects against neurotoxicity.


Assuntos
Manganês/metabolismo , Síndromes Neurotóxicas/prevenção & controle , Transportador 8 de Zinco/fisiologia , Animais , Química Encefálica , Sistema Digestório/química , Fígado/química , Manganês/sangue , Camundongos , Camundongos Knockout , Substâncias Protetoras/farmacologia , Transportador 8 de Zinco/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...