RESUMO
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
Assuntos
Parede Celular/enzimologia , Populus/enzimologia , Madeira/citologia , Xilosidases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Quimera , Regulação da Expressão Gênica de Plantas , Hidrólise , Microfibrilas , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/citologia , Populus/genética , Madeira/química , Madeira/enzimologia , Xilanos/metabolismo , Xilema/citologia , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilosidases/genéticaRESUMO
Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.
Assuntos
Glucanos/metabolismo , Glicosiltransferases/metabolismo , Hibridização Genética , Populus/enzimologia , Populus/crescimento & desenvolvimento , Madeira/enzimologia , Madeira/crescimento & desenvolvimento , Xilanos/metabolismo , Anticorpos Monoclonais/metabolismo , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Dados de Sequência Molecular , Peso Molecular , Família Multigênica/genética , Filogenia , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Populus/citologia , Populus/genética , Coloração e Rotulagem , Madeira/citologia , Madeira/genética , Xilema/citologia , Xilema/enzimologiaRESUMO
Cellulose biosynthesis is a vital but yet poorly understood biochemical process in Oomycetes. Here, we report the identification and characterization of the cellulose synthase genes (CesA) from Saprolegnia monoica. Southern blot experiments revealed the occurrence of three CesA homologues in this species and phylogenetic analyses confirmed that Oomycete CesAs form a clade of their own. All gene products contained the D,D,D,QXXRW signature of most processive glycosyltransferases, including cellulose synthases. However, their N-terminal ends exhibited Oomycete-specific domains, i.e. Pleckstrin Homology domains, or conserved domains of an unknown function together with additional putative transmembrane domains. Mycelial growth was inhibited in the presence of the cellulose biosynthesis inhibitors 2,6-dichlorobenzonitrile or Congo Red. This inhibition was accompanied by a higher expression of all CesA genes in the mycelium and increased in vitro glucan synthase activities. Altogether, our data strongly suggest a direct involvement of the identified CesA genes in cellulose biosynthesis.
Assuntos
Celulose/biossíntese , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Saprolegnia/efeitos dos fármacos , Saprolegnia/enzimologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Southern Blotting , Vermelho Congo/farmacologia , DNA de Algas/genética , Nitrilas/farmacologia , Saprolegnia/genética , Estresse FisiológicoRESUMO
KORRIGAN1 (KOR1) is a membrane-bound cellulase implicated in cellulose biosynthesis. PttCel9A1 from hybrid aspen (Populus tremula L. x tremuloides Michx.) has high sequence similarity to KOR1 and we demonstrate here that it complements kor1-1 mutants, indicating that it is a KOR1 ortholog. We investigated the function of PttCel9A1/KOR1 in Arabidopsis secondary growth using transgenic lines expressing 35S::PttCel9A1 and the KOR1 mutant line irx2-2. The presence of elevated levels of PttCel9A1/KOR1 in secondary walls of 35S::PttCel9A1 lines was confirmed by in muro visualization of cellulase activity. Compared with the wild type, 35S::PttCel9A1 lines had higher trifluoroacetic acid (TFA)-hydrolyzable glucan contents, similar Updegraff cellulose contents and lower cellulose crystallinity indices, as determined by (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. irx2-2 mutants had wild-type TFA-hydrolyzable glucan contents, but reduced Updegraff cellulose contents and higher than wild-type cellulose crystallinity indices. The data support the hypothesis that PttCel9A1/KOR1 activity is present in cell walls, where it facilitates cellulose biosynthesis in a way that increases the amount of non-crystalline cellulose.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Celulase/metabolismo , Celulose/metabolismo , Proteínas de Membrana/metabolismo , Populus/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Celulase/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucanos/metabolismo , Proteínas de Membrana/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/genética , Populus/crescimento & desenvolvimentoRESUMO
Detergent-resistant plasma membrane microdomains [DRMs (detergent-resistant membranes)] were isolated recently from several plant species. As for animal cells, a large range of cellular functions, such as signal transduction, endocytosis and protein trafficking, have been attributed to plant lipid rafts and DRMs. The data available are essentially based on proteomics and more approaches need to be undertaken to elucidate the precise function of individual populations of DRMs in plants. We report here the first isolation of DRMs from purified plasma membranes of a tree species, the hybrid aspen Populus tremula x tremuloides, and their biochemical characterization. Plasma membranes were solubilized with Triton X-100 and the resulting DRMs were isolated by flotation in sucrose density gradients. The DRMs were enriched in sterols, sphingolipids and glycosylphosphatidylinositol-anchored proteins and thus exhibited similar properties to DRMs from other species. However, they contained key carbohydrate synthases involved in cell wall polysaccharide biosynthesis, namely callose [(1-->3)-beta-D-glucan] and cellulose synthases. The association of these enzymes with DRMs was demonstrated using specific glucan synthase assays and antibodies, as well as biochemical and chemical approaches for the characterization of the polysaccharides synthesized in vitro by the isolated DRMs. More than 70% of the total glucan synthase activities present in the original plasma membranes was associated with the DRM fraction. In addition to shedding light on the lipid environment of callose and cellulose synthases, our results demonstrate the involvement of DRMs in the biosynthesis of important cell wall polysaccharides. This novel concept suggests a function of plant membrane microdomains in cell growth and morphogenesis.
Assuntos
Parede Celular/metabolismo , Microdomínios da Membrana/fisiologia , Polissacarídeos/biossíntese , Árvores/citologia , Glucosiltransferases , Células Híbridas , Microdomínios da Membrana/química , Microdomínios da Membrana/enzimologia , OctoxinolRESUMO
Reorganization and degradation of the wall crosslinking and seed storage polysaccharide xyloglucan by glycoside hydrolase family 16 (GH16) endo-transglycosylases and hydrolases are crucial to the growth of the majority of land plants, affecting processes as diverse as germination, morphogenesis, and fruit ripening. A high-resolution, three-dimensional structure of a nasturtium (Tropaeolum majus) endo-xyloglucanase loop mutant, TmNXG1-DeltaYNIIG, with an oligosaccharide product bound in the negative active-site subsites, has been solved by X-ray crystallography. Comparison of this novel complex to that of the strict xyloglucan endo-transglycosylase PttXET16-34 from hybrid aspen (Populus tremula x tremuloides), previously solved with a xylogluco-oligosaccharide bound in the positive subsites, highlighted key protein structures that affect the disparate catalytic activities displayed by these closely related enzymes. Combination of these "partial" active-site complexes through molecular dynamics simulations in water allowed modeling of wild-type TmNXG1, TmNXG1-DeltaYNIIG, and wild-type PttXET16-34 in complex with a xyloglucan octadecasaccharide spanning the entire catalytic cleft. A comprehensive analysis of these full-length complexes underscored the importance of various loops lining the active site. Subtle differences leading to a tighter hydrogen bonding pattern on the negative (glycosyl donor) binding subsites, together with loop flexibility on the positive (glycosyl acceptor) binding subsites appear to favor hydrolysis over transglycosylation in GH16 xyloglucan-active enzymes.
Assuntos
Glucanos/metabolismo , Glicosídeo Hidrolases/química , Glicosiltransferases/química , Nasturtium/enzimologia , Proteínas de Plantas/química , Xilanos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Glucanos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nasturtium/química , Nasturtium/genética , Pichia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Triptofano/química , Xilanos/químicaRESUMO
A family 16 glycoside hydrolase, xyloglucan xyloglucosyl transferase (EC 2.4.1.207), also known as xyloglucan endotransglycosylase (XET), and designated isoenzyme HvXET6, was purified approximately 400-fold from extracts of young barley seedlings. The complete amino acid sequence of HvXET6 was deduced from the nucleotide sequence of a near full-length cDNA, in combination with tryptic peptide mapping. An additional five to six isoforms or post-translationally modified XET enzymes were detected in crude seedling extracts of barley. The HvXET6 isoenzyme was expressed in Pichia pastoris, characterized and compared with the previously purified native HvXET5 isoform. Barley HvXET6 has a similar apparent molecular mass of 33-35 kDa to the previously purified HvXET5 isoenzyme, but the two isoenzymes differ in their isoelectric points, pH optima, kinetic properties and substrate specificities. The HvXET6 isoenzyme catalyses transfer reactions between xyloglucans and soluble cellulosic substrates, using oligo-xyloglucosides as acceptors, but at rates that are significantly different from those observed for HvXET5. No hydrolytic activity could be detected with either isoenzyme. Comparisons of the reaction rates using xyloglucan or hydroxyethyl cellulose as donors and a series of cellodextrins as acceptors indicated that the acceptor site of HvXET can accommodate five glucosyl residues. Molecular modelling supported this conclusion and further confirmed the ability of the enzyme's active site to accommodate xyloglucan and cellulosic substrates. The two HvXETs followed a ping-pong (Bi, Bi) rather than a sequential reaction mechanism.
Assuntos
Biocatálise , Glicosiltransferases/metabolismo , Hordeum/enzimologia , Sequência de Aminoácidos , Eletroforese , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/isolamento & purificação , Hordeum/genética , Isoenzimas/química , Isoenzimas/classificação , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Fatores de TempoRESUMO
We have identified a gene, denoted PttMAP20, which is strongly up-regulated during secondary cell wall synthesis and tightly coregulated with the secondary wall-associated CESA genes in hybrid aspen (Populus tremula x tremuloides). Immunolocalization studies with affinity-purified antibodies specific for PttMAP20 revealed that the protein is found in all cell types in developing xylem and that it is most abundant in cells forming secondary cell walls. This PttMAP20 protein sequence contains a highly conserved TPX2 domain first identified in a microtubule-associated protein (MAP) in Xenopus laevis. Overexpression of PttMAP20 in Arabidopsis (Arabidopsis thaliana) leads to helical twisting of epidermal cells, frequently associated with MAPs. In addition, a PttMAP20-yellow fluorescent protein fusion protein expressed in tobacco (Nicotiana tabacum) leaves localizes to microtubules in leaf epidermal pavement cells. Recombinant PttMAP20 expressed in Escherichia coli also binds specifically to in vitro-assembled, taxol-stabilized bovine microtubules. Finally, the herbicide 2,6-dichlorobenzonitrile, which inhibits cellulose synthesis in plants, was found to bind specifically to PttMAP20. Together with the known function of cortical microtubules in orienting cellulose microfibrils, these observations suggest that PttMAP20 has a role in cellulose biosynthesis.
Assuntos
Parede Celular/efeitos dos fármacos , Celulose/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Nitrilas/farmacologia , Árvores/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Parede Celular/metabolismo , Celulose/sangue , Primers do DNA , Perfilação da Expressão Gênica , Hibridização Genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de AminoácidosRESUMO
Restructuring the network of xyloglucan (XG) and cellulose during plant cell wall morphogenesis involves the action of xyloglucan endo-transglycosylases (XETs). They cleave the XG chains and transfer the enzyme-bound XG fragment to another XG molecule, thus allowing transient loosening of the cell wall and also incorporation of nascent XG during expansion. The substrate specificity of a XET from Populus (PttXET16-34) has been analyzed by mapping the enzyme binding site with a library of xylogluco-oligosaccharides as donor substrates using a labeled heptasaccharide as acceptor. The extended binding cleft of the enzyme is composed of four negative and three positive subsites (with the catalytic residues between subsites -1 and +1). Donor binding is dominated by the higher affinity of the XXXG moiety (G=Glcbeta(1-->4) and X=Xylalpha(1-->6)Glcbeta(1-->4)) of the substrate for positive subsites, whereas negative subsites have a more relaxed specificity, able to bind (and transfer to the acceptor) a cello-oligosaccharyl moiety of hybrid substrates such as GGGGXXXG. Subsite mapping with k(cat)/K(m) values for the donor substrates showed that a GG-unit on negative and -XXG on positive subsites are the minimal requirements for activity. Subsites -2 and -3 (for backbone Glc residues) and +2' (for Xyl substitution at Glc in subsite +2) have the largest contribution to transition state stabilization. GalGXXXGXXXG (Gal=Galbeta(1-->4)) is the best donor substrate with a "blocked" nonreducing end that prevents polymerization reactions and yields a single transglycosylation product. Its kinetics have unambiguously established that the enzyme operates by a ping-pong mechanism with competitive inhibition by the acceptor.
Assuntos
Glicosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Populus/enzimologia , Bibliotecas de Moléculas Pequenas/metabolismo , Sítios de Ligação , Eletroforese Capilar , Cinética , Naftalenos/metabolismo , Fatores de TempoRESUMO
Xyloglucan endo-transglycosylases (XETs) are key enzymes involved in the restructuring of plant cell walls during morphogenesis. As members of glycoside hydrolase family 16 (GH16), XETs are predicted to employ the canonical retaining mechanism of glycosyl transfer involving a covalent glycosyl-enzyme intermediate. Here, we report the accumulation and direct observation of such intermediates of PttXET16-34 from hybrid aspen by electrospray mass spectrometry in combination with synthetic "blocked" substrates, which function as glycosyl donors but are incapable of acting as glycosyl acceptors. Thus, GalGXXXGGG and GalGXXXGXXXG react with the wild-type enzyme to yield relatively stable, kinetically competent, covalent GalG-enzyme and GalGXXXG-enzyme complexes, respectively (Gal=Galbeta(1-->4), G=Glcbeta(1-->4), and X=Xylalpha(1-->6)Glcbeta(1-->4)). Quantitation of ratios of protein and saccharide species at pseudo-equilibrium allowed us to estimate the free energy change (DeltaG(0)) for the formation of the covalent GalGXXXG-enzyme as 6.3-8.5 kJ/mol (1.5-2.0 kcal/mol). The data indicate that the free energy of the beta(1-->4) glucosidic bond in xyloglucans is preserved in the glycosyl-enzyme intermediate and harnessed for religation of the polysaccharide in vivo.
Assuntos
Glicosiltransferases/metabolismo , Populus/enzimologia , Termodinâmica , Glicosiltransferases/biossíntese , Glicosiltransferases/química , Hidrólise , Espectrometria de Massas , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Populus/química , Coloração e RotulagemRESUMO
1H NMR spectroscopy has been used to analyze the product profiles arising from the hydrolysis of cellooligosaccharides by family GH9 cellulases. The product profiles obtained with the wild type and several active site mutants of a bacterial processive endoglucanase, TfCel9A, were compared with those obtained by a randomly acting plant endoglucanase, PttCel9A. PttCel9A is an orthologue of the Arabidopsis endocellulase, Korrigan, which is required for efficient cellulose biosynthesis. As expected, poplar PttCel9A was shown to catalyze the degradation of cellooligosaccharides by inversion of the configuration of the anomeric carbon. The product analyses showed that the number of interactions between the glucose units of the substrate and the aromatic residues in the enzyme active sites determines the point of cleavage in both enzymes.
Assuntos
Actinomycetales/enzimologia , Celulase/química , Celulase/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Populus/enzimologia , Actinomycetales/genética , Celulase/genética , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Estrutura Molecular , Mutação/genéticaRESUMO
Expansins are primary agents inducing cell wall extension, and are therefore obvious targets in biotechnological applications aimed at the modification of cell size in plants. In trees, increased fibre length is a goal of both breeding and genetic engineering programmes. We used an alpha-expansin PttEXPA1 that is highly abundant in the wood-forming tissues of hybrid aspen (Populus tremula L. x P. tremuloides Michx.) to evaluate its role in fibre elongation and wood cell development. PttEXPA1 belongs to Subfamily A of alpha-expansins that have conserved motifs at the N- and C-termini of the mature protein. When PttEXPA1 was over-expressed in aspen, an extract of the cell wall-bound proteins of the transgenic plants exhibited an increased expansin activity on cellulose-xyloglucan composites in vitro, indicating that PttEXPA1 is an active expansin. The transgenic lines exhibited increased stem internode elongation and leaf expansion, and larger cell sizes in the leaf epidermis, indicating that PttEXPA1 protein is capable of increasing the growth of these organs by enhancing cell wall expansion in planta. Wood cell development was also modified in the transgenic lines, but the effects were different for vessel elements and fibres, the two main cell types of aspen wood. PttEXPA1 stimulated fibre, but not vessel element, diameter growth, and marginally increased vessel element length, but did not affect fibre length. The observed differences in responsiveness to expansin of these cell types are discussed in the light of differences in their growth strategies and cell wall composition.
Assuntos
Crescimento Celular , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Expressão Gênica , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Populus/genética , Populus/metabolismo , Madeira/metabolismoRESUMO
The microtubule network, the major organelle of the eukaryotic cytoskeleton, is involved in cell division and differentiation but also with many other cellular functions. In plants, microtubules seem to be involved in the ordered deposition of cellulose microfibrils by a so far unknown mechanism. Microtubule-associated proteins (MAP) typically contain various domains targeting or binding proteins with different functions to microtubules. Here we have investigated a proposed microtubule-targeting domain, TPX2, first identified in the Kinesin-like protein 2 in Xenopus. A TPX2 containing microtubule binding protein, PttMAP20, has been recently identified in poplar tissues undergoing xylogenesis. Furthermore, the herbicide 2,6-dichlorobenzonitrile (DCB), which is a known inhibitor of cellulose synthesis, was shown to bind specifically to PttMAP20. It is thus possible that PttMAP20 may have a role in coupling cellulose biosynthesis and the microtubular networks in poplar secondary cell walls. In order to get more insight into the occurrence, evolution and potential functions of TPX2-containing proteins we have carried out bioinformatic analysis for all genes so far found to encode TPX2 domains with special reference to poplar PttMAP20 and its putative orthologs in other plants.
RESUMO
Glycosynthases are active-site mutants of glycoside hydrolases that catalyse glycosyl transfer using suitable activated donor substrates without competing product hydrolysis (S. M. Hancock, M. D. Vaughan and S. G. Withers, Curr. Opin. Chem. Biol., 2006, 10, 509-519). Site-directed mutagenesis of the catalytic nucleophile, Glu-85, of a Populus tremula x tremuloides xyloglucan endo-transglycosylase (PttXET16-34, EC 2.4.1.207) into alanine, glycine, and serine yielded enzymes with glycosynthase activity. Product analysis indicated that PttXET16-34 E85A in particular was able to catalyse regio- and stereospecific homo- and hetero-condensations of alpha-xylogluco-oligosaccharyl fluoride donors XXXGalphaF and XLLGalphaF to produce xyloglucans with regular sidechain substitution patterns. This substrate promiscuity contrasts that of the Humicola insolens Cel7B E197A glycosynthase, which was not able to polymerise the di-galactosylated substrate XLLGalphaF. The production of the PttXET16-34 E85A xyloglucosynthase thus expands the repertoire of glycosynthases to include those capable of synthesising structurally homogenenous xyloglucans for applications.
Assuntos
Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Populus/enzimologia , Sítios de Ligação , Catálise , Flúor/química , Hidrólise , Cinética , Mutagênese Sítio-Dirigida , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Especificidade por SubstratoRESUMO
Recent sequencing of a number of fungal genomes has revealed the presence of multiple putative beta-glucosidases. Here, we report the cloning of two beta-glucosidase genes (bg1 and aven1), which have very different biological functions and represent two of a number of beta-glucosidases from Talaromyces emersonii. The bg1 gene, encoding a putative intracellular beta-glucosidase, shows significant similarity to other fungal glucosidases from glycosyl hydrolase family 1, known to be involved in cellulose degradation. Solka floc, methyl-xylose, gentiobiose, beech wood xylan, and lactose induced expression of bg1, whereas glucose repressed expression. A second beta-glucosidase gene isolated from T. emersonii, aven1, encodes a putative avenacinase, an enzyme that deglucosylates the anti-fungal saponin, avenacin, rendering it less toxic to the fungus. This gene displays high homology with other fungal saponin-hydrolysing enzymes and beta-glucosidases within GH3. A putative secretory signal peptide of 21 amino acids was identified at the N-terminus of the predicted aven1 protein sequence suggesting that this enzyme is extracellular. Furthermore, T. emersonii cultivated on oat plant biomass was shown to deglucosylate avenacin. The presence of the avenacinase transcript was confirmed by RT-PCR on RNA extracted from mycelia grown in the presence of avenacin. The expression pattern of aven1 on various carbon sources was distinctly different from that of bg1. Only methyl-xylose and gentiobiose induced transcription of aven1. Gentiobiose induces synthesis of a number of cellulase genes by T. emersonii and it may be a possible candidate for the natural cellulase inducer observed in Penicillium purpurogenum. This work represents the first report of an avenacinase gene from a thermophilic, saprophytic fungal source, and suggests that this gene is not exclusive to plant pathogens.
Assuntos
Clonagem Molecular , Temperatura Alta , Talaromyces/enzimologia , beta-Glucosidase/classificação , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Meios de Cultura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Saponinas/metabolismo , Análise de Sequência de DNA , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Talaromyces/metabolismo , beta-Glucosidase/química , beta-Glucosidase/genéticaRESUMO
High-resolution, three-dimensional structures of the archetypal glycoside hydrolase family 16 (GH16) endo-xyloglucanases Tm-NXG1 and Tm-NXG2 from nasturtium (Tropaeolum majus) have been solved by x-ray crystallography. Key structural features that modulate the relative rates of substrate hydrolysis to transglycosylation in the GH16 xyloglucan-active enzymes were identified by structure-function studies of the recombinantly expressed enzymes in comparison with data for the strict xyloglucan endo-transglycosylase Ptt-XET16-34 from hybrid aspen (Populus tremula x Populus tremuloides). Production of the loop deletion variant Tm-NXG1-DeltaYNIIG yielded an enzyme that was structurally similar to Ptt-XET16-34 and had a greatly increased transglycosylation:hydrolysis ratio. Comprehensive bioinformatic analyses of XTH gene products, together with detailed kinetic data, strongly suggest that xyloglucanase activity has evolved as a gain of function in an ancestral GH16 XET to meet specific biological requirements during seed germination, fruit ripening, and rapid wall expansion.
Assuntos
Parede Celular/metabolismo , Evolução Molecular , Glicosídeo Hidrolases/química , Proteínas de Plantas/química , Tropaeolum/enzimologia , Catálise , Cromatografia em Gel , Clonagem Molecular , Cristalografia por Raios X , DNA Complementar/metabolismo , Deleção de Genes , Glucanos , Cinética , Dados de Sequência Molecular , Mutagênese , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oligossacarídeos/metabolismo , Filogenia , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato , XilanosRESUMO
Tension wood is a specialized tissue of deciduous trees that functions in bending woody stems to optimize their position in space. Tension wood fibers that develop on one side of the stem have an increased potency to shrink compared with fibers on the opposite side, thus creating a bending moment. It is believed that the gelatinous (G) cell wall layer containing almost pure cellulose of tension wood fibers is pivotal to their shrinking. By analyzing saccharide composition and linkage in isolated G-layers of poplar, we found that they contain some matrix components in addition to cellulose, of which xyloglucan is the most abundant. Xyloglucan, xyloglucan endo-transglycosylase (XET) activity and xyloglucan endo-transglycosylase/hydrolase (XTH) gene products were detected in developing G-layers by labeling using CCRC-M1 monoclonal antibody, in situ incorporation of XXXG-SR and the polyclonal antibody to poplar PttXET16-34, respectively, indicating that xyloglucan is incorporated into the G-layer during its development. Moreover, several XTH transcripts were altered and were generally up-regulated in developing tension wood compared with normal wood. In mature G-fibers, XTH gene products were detected in the G-layers while the XET activity was evident in the adjacent S(2) wall layer. We propose that XET activity is essential for G-fiber shrinking by repairing xyloglucan cross-links between G- and S(2)-layers and thus maintaining their contact. Surprisingly, XTH gene products and XET activity persisted in mature G-fibers for several years, suggesting that the enzyme functions after cell death repairing the cross-links as they are being broken during the shrinking process.
Assuntos
Glicosiltransferases/metabolismo , Populus/enzimologia , Madeira/enzimologia , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Populus/citologiaRESUMO
Biomimetics is a field of science that investigates biological structures and processes for their use as models for the development of artificial systems. Biomimetic approaches have considerable potential in the development of new high-performance materials with low environmental impact. The cell walls of different plant species represent complex and highly sophisticated composite materials that can provide inspiration on how to design and fabricate lightweight materials with unique properties. Such materials can provide environmentally compatible solutions in advanced packaging, electronic devices, vehicles and sports equipment. This review gives an overview of the structures and interactions in natural plant cell walls and describes the first attempts towards mimicking them to develop novel biomaterials.
Assuntos
Materiais Biomiméticos/síntese química , Biomimética/métodos , Biomimética/tendências , Celulose/química , Engenharia Química/métodos , Materiais Biomiméticos/química , Teste de Materiais , Engenharia Tecidual/métodosRESUMO
Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.