Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(754): eadi6887, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959328

RESUMO

Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.


Assuntos
COVID-19 , Classe Ib de Fosfatidilinositol 3-Quinase , Inflamação , SARS-CoV-2 , COVID-19/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Animais , Inflamação/patologia , Humanos , Tratamento Farmacológico da COVID-19 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Pulmão/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia
2.
Science ; 384(6702): eade8520, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900864

RESUMO

Unleashing antitumor T cell activity by checkpoint inhibitor immunotherapy is effective in cancer patients, but clinical responses are limited. Cytokine signaling through the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway correlates with checkpoint immunotherapy resistance. We report a phase I clinical trial of the JAK inhibitor ruxolitinib with anti-PD-1 antibody nivolumab in Hodgkin lymphoma patients relapsed or refractory following checkpoint inhibitor immunotherapy. The combination yielded a best overall response rate of 53% (10/19). Ruxolitinib significantly reduced neutrophil-to-lymphocyte ratios and percentages of myeloid suppressor cells but increased numbers of cytokine-producing T cells. Ruxolitinib rescued the function of exhausted T cells and enhanced the efficacy of immune checkpoint blockade in preclinical solid tumor and lymphoma models. This synergy was characterized by a switch from suppressive to immunostimulatory myeloid cells, which enhanced T cell division.


Assuntos
Doença de Hodgkin , Inibidores de Checkpoint Imunológico , Inibidores de Janus Quinases , Nitrilas , Nivolumabe , Pirazóis , Pirimidinas , Linfócitos T , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/imunologia , Doença de Hodgkin/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Nitrilas/uso terapêutico , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
3.
Nat Biomed Eng ; 8(5): 499-512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693431

RESUMO

Bispecific T-cell engagers (BiTEs) bring together tumour cells and cytotoxic T cells by binding to specific cell-surface tumour antigens and T-cell receptors, and have been clinically successful for the treatment of B-cell malignancies. Here we show that a BiTE-sialidase fusion protein enhances the susceptibility of solid tumours to BiTE-mediated cytolysis of tumour cells via targeted desialylation-that is, the removal of terminal sialic acid residues on glycans-at the BiTE-induced T-cell-tumour-cell interface. In xenograft and syngeneic mouse models of leukaemia and of melanoma and breast cancer, and compared with the parental BiTE molecules, targeted desialylation via the BiTE-sialidase fusion proteins enhanced the formation of immunological synapses, T-cell activation and T-cell-mediated tumour-cell cytolysis in the presence of the target antigen. The targeted desialylation of tumour cells may enhance the potency of therapies relying on T-cell engagers.


Assuntos
Neuraminidase , Animais , Neuraminidase/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia , Feminino , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Ativação Linfocitária , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/química , Ensaios Antitumorais Modelo de Xenoenxerto , Linfócitos T Citotóxicos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia
4.
PLoS Pathog ; 20(3): e1012095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512979

RESUMO

The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.


Assuntos
Doenças Autoimunes , Coriomeningite Linfocítica , Animais , Camundongos , Alelos , Doenças Autoimunes/genética , Autoimunidade/genética , Monoéster Fosfórico Hidrolases/genética , Tirosina
5.
ACS Chem Biol ; 19(2): 254-265, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38198472

RESUMO

The NLRP3 inflammasome is a cytosolic protein complex important for the regulation and secretion of inflammatory cytokines, including IL-1ß and IL-18. Aberrant overactivation of NLRP3 is implicated in numerous inflammatory disorders. However, the activation and regulation of NLRP3 inflammasome signaling remain poorly understood, limiting our ability to develop pharmacologic approaches to target this important inflammatory complex. Here, we developed and implemented a high-throughput screen to identify compounds that inhibit the inflammasome assembly and activity. From this screen, we identify and profile inflammasome inhibition of 20 new covalent compounds across nine different chemical scaffolds, as well as many known inflammasome covalent inhibitors. Intriguingly, our results indicate that NLRP3 possesses numerous reactive cysteines on multiple domains whose covalent targeting blocks the activation of this inflammatory complex. Specifically, focusing on compound VLX1570, which possesses multiple electrophilic moieties, we demonstrate that this compound allows covalent, intermolecular cross-linking of NLRP3 cysteines to inhibit inflammasome assembly. Our results, along with the recent identification of numerous covalent molecules that inhibit NLRP3 inflammasome activation, further support the continued development of electrophilic compounds that target reactive cysteine residues on NLRP3 to regulate its activation and activity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Citocinas , Interleucina-1beta/metabolismo
6.
Nat Chem Biol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191941

RESUMO

SLC15A4 is an endolysosome-resident transporter linked with autoinflammation and autoimmunity. Specifically, SLC15A4 is critical for Toll-like receptors (TLRs) 7-9 as well as nucleotide-binding oligomerization domain-containing protein (NOD) signaling in several immune cell subsets. Notably, SLC15A4 is essential for the development of systemic lupus erythematosus in murine models and is associated with autoimmune conditions in humans. Despite its therapeutic potential, the availability of quality chemical probes targeting SLC15A4 functions is limited. In this study, we used an integrated chemical proteomics approach to develop a suite of chemical tools, including first-in-class functional inhibitors, for SLC15A4. We demonstrate that these inhibitors suppress SLC15A4-mediated endolysosomal TLR and NOD functions in a variety of human and mouse immune cells; we provide evidence of their ability to suppress inflammation in vivo and in clinical settings; and we provide insights into their mechanism of action. Our findings establish SLC15A4 as a druggable target for the treatment of autoimmune and autoinflammatory conditions.

7.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722054

RESUMO

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Bovinos , Anticorpos , Fragmentos Fab das Imunoglobulinas/genética , Dissulfetos
8.
Cell Rep ; 42(8): 112968, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578862

RESUMO

The miR-17∼92 family microRNAs (miRNAs) play a key role in germinal center (GC) reaction through promoting T follicular helper (TFH) cell differentiation. It remains unclear whether they also have intrinsic functions in B cell differentiation and function. Here we show that mice with B cell-specific deletion of the miR-17∼92 family exhibit impaired GC reaction, plasma cell differentiation, and antibody production in response to protein antigen immunization and chronic viral infection. Employing CRISPR-mediated functional screening, we identify Socs3 as a key functional target of miR-17∼92 in regulating plasma cell differentiation. Mechanistically, SOCS3, whose expression is elevated in miR-17∼92 family-deficient B cells, interacts with NIK and promotes its ubiquitination and degradation, thereby impairing NF-κB signaling and plasma cell differentiation. This moderate increase in SOCS3 expression has little effect on IL-21-STAT3 signaling. Our study demonstrates differential sensitivity of two key signaling pathways to alterations in the protein level of an miRNA target gene.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T Auxiliares-Indutores , Linfócitos B , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Diferenciação Celular/genética , Centro Germinativo
9.
Sci Signal ; 16(798): eabk3516, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582161

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for strategies to rapidly develop neutralizing monoclonal antibodies that can function as prophylactic and therapeutic agents and to help guide vaccine design. Here, we demonstrate that engineering approaches can be used to refocus an existing antibody that neutralizes one virus but not a related virus. Through a rapid affinity maturation strategy, we engineered CR3022, a SARS-CoV-1-neutralizing antibody, to bind to the receptor binding domain of SARS-CoV-2 with >1000-fold increased affinity. The engineered CR3022 neutralized SARS-CoV-2 and provided prophylactic protection from viral challenge in a small animal model of SARS-CoV-2 infection. Deep sequencing throughout the engineering process paired with crystallographic analysis of engineered CR3022 elucidated the molecular mechanisms by which the antibody can accommodate sequence differences in the epitopes between SARS-CoV-1 and SARS-CoV-2. This workflow provides a blueprint for the rapid broadening of neutralization of an antibody from one virus to closely related but resistant viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Antivirais , Testes de Neutralização , Anticorpos Neutralizantes
10.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398499

RESUMO

The NLRP3 inflammasome is a cytosolic protein complex important for the regulation and secretion of inflammatory cytokines including IL-1ß and IL-18. Aberrant overactivation of NLRP3 is implicated in numerous inflammatory disorders. However, the activation and regulation of NLRP3 inflammasome signaling remains poorly understood, limiting our ability to develop pharmacologic approaches to target this important inflammatory complex. Here, we developed and implemented a high-throughput screen to identify compounds that inhibit inflammasome assembly and activity. From this screen we identify and profile inflammasome inhibition of 20 new covalent compounds across 9 different chemical scaffolds, as well as many known inflammasome covalent inhibitors. Intriguingly, our results indicate that NLRP3 possesses numerous reactive cysteines on multiple domains whose covalent targeting blocks activation of this inflammatory complex. Specifically, focusing on compound VLX1570, which possesses multiple electrophilic moieties, we demonstrate that this compound allows covalent, intermolecular crosslinking of NLRP3 cysteines to inhibit inflammasome assembly. Our results, along with the recent identification of numerous covalent molecules that inhibit NLRP3 inflammasome activation, suggests that NLRP3 serves as a cellular electrophile sensor important for coordinating inflammatory signaling in response to redox stress. Further, our results support the potential for covalent cysteine modification of NLRP3 for regulating inflammasome activation and activity.

11.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
12.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798389

RESUMO

The histone methyltransferase enhancer of zeste homolog 2 (EZH2)-mediated epigenetic regulation of T cell differentiation in acute infection has been extensively investigated. However, the role of EZH2 in T cell exhaustion remains under-explored. Here, using in vitro exhaustion models, we demonstrated that transient inhibition of EZH2 in T cells before the phenotypic onset of exhaustion with a clinically approved inhibitor, Tazemetastat, delayed their dysfunctional progression and maintained T cell stemness and polyfunctionality while having no negative impact on cell proliferation. Tazemetestat induced T cell epigenetic reprogramming and increased the expression of the self-renewing T cell transcription factor TCF1 by reducing its promoter H3K27 methylation preferentially in rapidly dividing T cells. In a murine melanoma model, T cells pre-treated with tazemetastat exhibited a superior response to anti-PD-1 blockade therapy after adoptive transfer. Collectively, these data unveil the potential of transient epigenetic reprogramming as a potential intervention to be combined with checkpoint blockade for immune therapy.

13.
Front Immunol ; 13: 906355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189299

RESUMO

Cytotoxic CD8 T cells are crucial for the host antigen-specific immune response to viral pathogens. Here we report the identification of an essential role for the serine/arginine-rich splicing factor (SRSF) 1 in CD8 T cell homeostasis and function. Specifically, SRSF1 is necessary for the maintenance of normal CD8 T lymphocyte numbers in the lymphoid compartment, and for the proliferative capacity and cytotoxic function of CD8 T cells. Furthermore, SRSF1 is required for antigen-specific IFN-γ cytokine responses in a viral infection challenge in mice. Transcriptomics analyses of Srsf1-deficient T cells reveal that SRSF1 controls proliferation, MAP kinase signaling and IFN signaling pathways. Mechanistically, SRSF1 controls the expression and activity of the Mnk2/p38-MAPK axis at the molecular level. Our findings reveal previously unrecognized roles for SRSF1 in the physiology and function of cytotoxic CD8 T lymphocytes and a potential molecular mechanism in viral immunopathogenesis.


Assuntos
Linfócitos T CD8-Positivos , Citocinas , Fatores de Processamento de Serina-Arginina/imunologia , Animais , Arginina , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Imunidade , Camundongos , Fatores de Processamento de RNA , Serina , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
15.
Nat Chem Biol ; 18(12): 1388-1398, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097295

RESUMO

The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as 'silent' ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.


Assuntos
Cisteína , Proteômica , Transdução de Sinais , Citocinas , Isoformas de Proteínas
16.
iScience ; 25(9): 104914, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35971553

RESUMO

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.

17.
Proc Natl Acad Sci U S A ; 119(14): e2200544119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349343

RESUMO

A function-impairing mutation (feeble) or genomic deletion of SLC15A4 abolishes responses of nucleic acid­sensing endosomal toll-like receptors (TLRs) and significantly reduces disease in mouse models of lupus. Here, we demonstrate disease reduction in homozygous and even heterozygous Slc15a4 feeble mutant BXSB male mice with a Tlr7 gene duplication. In contrast to SLC15A4, a function-impairing mutation of SLC15A3 did not diminish type I interferon (IFN-I) production by TLR-activated plasmacytoid dendritic cells (pDCs), indicating divergence of function between these homologous SLC15 family members. Trafficking to endolysosomes and function of SLC15A4 were dependent on the Adaptor protein 3 (AP-3) complex. Importantly, SLC15A4 was required for trafficking and colocalization of nucleic acid­sensing TLRs and their ligands to endolysosomes and the formation of the LAMP2+VAMP3+ hybrid compartment in which IFN-I production is initiated. Collectively, these findings define mechanistic processes by which SLC15A4 controls endosomal TLR function and suggest that pharmacologic intervention to curtail the function of this transporter may be a means to treat lupus and other endosomal TLR-dependent diseases.


Assuntos
Ácidos Nucleicos , Animais , Endossomos/metabolismo , Ligantes , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Receptores Toll-Like/metabolismo
18.
Sci Rep ; 12(1): 5382, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354833

RESUMO

Survival from influenza A virus (IAV) infection largely depends on an intricate balance between pathogen clearance and immunomodulation in the lung. We demonstrate that genetic alteration of the glycan heparan sulfate (HS) in CD11c + cells via Ndst1f/f CD11cCre + mutation, which inhibits HS sulfation in a major antigen presenting cell population, reduces lung inflammation by A/Puerto Rico/8/1934(H1N1) influenza in mice. Mutation was also characterized by a reduction in lung infiltration by CD4+ regulatory T (Treg) cells in the late infection/effector phase, 9 days post inoculation (p.i.), without significant differences in lung CD8 + T cells, or Treg cells at an earlier point (day 5) following infection. Induction of under-sulfated HS via Ndst1 silencing in a model dendritic cell line (DC2.4) resulted in up-regulated basal expression of the antiviral cytokine interferon ß (IFN-ß) relative to control. Stimulating cells with the TLR9 ligand CpG resulted in greater nuclear factor-κB (NFκB) phosphorylation in Ndst1 silenced DC2.4 cells. While stimulating cells with CpG also modestly increased IFN-ß expression, this did not lead to significant increases in IFN-ß protein production. In further IFN-ß protein response studies using primary bone marrow DCs from Ndst1f/f CD11cCre + mutant and Cre- control mice, while trace IFN-ß protein was detected in response to CpG, stimulation with the TLR7 ligand R848 resulted in robust IFN-ß production, with significantly higher levels associated with DC Ndst1 mutation. In vivo, improved pathogen clearance in Ndst1f/f CD11cCre + mutant mice was suggested by reduced IAV AA5H nucleoprotein in lung examined in the late/effector phase. Earlier in the course of infection (day 5 p.i.), mean viral load, as measured by viral RNA, was not significantly different among genotypes. These findings point to novel regulatory roles for DC HS in innate and adaptive immunity during viral infection. This may have therapeutic potential and guide DC targeted HS engineering platforms in the setting of IAV or other respiratory viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Heparitina Sulfato , Humanos , Inflamação/genética , Camundongos , Mutação
19.
Sci Transl Med ; 14(637): eabi9215, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133175

RESUMO

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human ß-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais , COVID-19/imunologia , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
20.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022243

RESUMO

Recent studies have identified a critical role for B cell-produced cytokines in regulating both humoral and cellular immunity. Here, we show that B cells are an essential source of interleukin-27 (IL-27) during persistent lymphocytic choriomeningitis virus (LCMV) clone 13 (Cl-13) infection. By using conditional knockout mouse models with specific IL-27p28 deletion in B cells, we observed that B cell-derived IL-27 promotes survival of virus-specific CD4 T cells and supports functions of T follicular helper (Tfh) cells. Mechanistically, B cell-derived IL-27 promotes CD4 T cell function, antibody class switch, and the ability to control persistent LCMV infection. Deletion of IL-27ra in T cells demonstrated that T cell-intrinsic IL-27R signaling is essential for viral control, optimal CD4 T cell responses, and antibody class switch during persistent LCMV infection. Collectively, our findings identify a cellular mechanism whereby B cell-derived IL-27 drives antiviral immunity and antibody responses through IL-27 signaling on T cells to promote control of LCMV Cl-13 infection.


Assuntos
Linfócitos B/metabolismo , Interleucina-27/metabolismo , Coriomeningite Linfocítica/imunologia , Imunidade Adaptativa , Animais , Anticorpos Antivirais , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Imunidade Celular , Interleucina-27/genética , Interleucinas , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...