Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Nat Ecol Evol ; 8(5): 901-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467713

RESUMO

Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.


Assuntos
Biodiversidade , Inundações , Rios , Árvores , Brasil , Florestas
3.
Commun Biol ; 6(1): 1130, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938615

RESUMO

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.


Assuntos
RNA Longo não Codificante , Árvores , Florestas , Solo , Temperatura
4.
Ecology ; 104(5): e4022, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890666

RESUMO

Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long-term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole-community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind-dispersed species exhibited significant synchrony at ~6-month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale-specificity and time-localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.


Assuntos
Plantas , Sementes , Estações do Ano , Reprodução , Fatores de Tempo , Mudança Climática
5.
Sci Rep ; 13(1): 2859, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36801913

RESUMO

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.


Assuntos
Biodiversidade , Ecossistema , Entropia , Florestas , Plantas , Ecologia , Clima Tropical
6.
Ecol Lett ; 26(2): 335-346, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36604979

RESUMO

Documenting patterns of spatiotemporal change in hyper-diverse communities remains a challenge for tropical ecology yet is increasingly urgent as some long-term studies have shown major declines in bird communities in undisturbed sites. In 1982, Terborgh et al. quantified the structure and organisation of the bird community in a 97-ha. plot in southeastern Peru. We revisited the same plot in 2018 using the same methodologies as the original study to evaluate community-wide changes. Contrary to longitudinal studies of other neotropical bird communities (Tiputini, Manaus, and Panama), we found little change in community structure and organisation, with increases in 5, decreases in 2 and no change in 7 foraging guilds. This apparent stability suggests that large forest reserves such as the Manu National Park, possibly due to regional topographical influences on precipitation, still provide the conditions for establishing refugia from at least some of the effects of global change on bird communities.


Assuntos
Biodiversidade , Parques Recreativos , Animais , Florestas , Ecologia , Aves
7.
Oecologia ; 199(4): 937-949, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35963917

RESUMO

Given the rate of biodiversity loss, there is an urgent need to understand community-level responses to extirpation events, with two prevailing hypotheses. On one hand, the loss of an apex predator leads to an increase in primary prey species, triggering a trophic cascade of other changes within the community, while density compensation and ecological release can occur because of reduced competition for resources and absence of direct aggression. White-lipped peccary (Tayassu pecari-WLP), a species that typically co-occurs with collared peccary (Pecari tajacu), undergo major population crashes-often taking 20 to 30-years for populations to recover. Using a temporally replicated camera trapping dataset, in both a pre- and post- WLP crash, we explore how WLP disappearance alters the structure of a Neotropical vertebrate community with findings indicative of density compensation. White-lipped peccary were the most frequently detected terrestrial mammal in the 2006-2007 pre-population crash period but were undetected during the 2019 post-crash survey. Panthera onca (jaguar) camera trap encounter rates declined by 63% following the WLP crash, while collared peccary, puma (Puma concolor), red-brocket deer (Mazama americana) and short-eared dog (Atelocynus microtis) all displayed greater encounter rates (490%, 150%, 280%, and 500% respectively), and increased in rank-abundance. Absence of WLP was correlated with ecological release changes in habitat-use for six species, with the greatest increase in use in the preferred floodplain habitat of the WLP. Surprisingly, community-weighted mean trait distributions (body size, feeding guild and nocturnality) did not change, suggesting functional redundancy in diverse tropical mammal assemblages.


Assuntos
Artiodáctilos , Cervos , Animais , Artiodáctilos/fisiologia , Biodiversidade , Cães , Ecossistema
8.
Sci Rep ; 12(1): 5960, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395860

RESUMO

Despite increasing attention for relationships between species richness and ecosystem services, for tropical forests such relationships are still under discussion. Contradicting relationships have been reported concerning carbon stock, while little is known about relationships concerning timber stock and the abundance of non-timber forest product producing plant species (NTFP abundance). Using 151 1-ha plots, we related tree and arborescent palm species richness to carbon stock, timber stock and NTFP abundance across the Guiana Shield, and using 283 1-ha plots, to carbon stock across all of Amazonia. We analysed how environmental heterogeneity influenced these relationships, assessing differences across and within multiple forest types, biogeographic regions and subregions. Species richness showed significant relationships with all three ecosystem services, but relationships differed between forest types and among biogeographical strata. We found that species richness was positively associated to carbon stock in all biogeographical strata. This association became obscured by variation across biogeographical regions at the scale of Amazonia, resembling a Simpson's paradox. By contrast, species richness was weakly or not significantly related to timber stock and NTFP abundance, suggesting that species richness is not a good predictor for these ecosystem services. Our findings illustrate the importance of environmental stratification in analysing biodiversity-ecosystem services relationships.


Assuntos
Ecossistema , Florestas , Biodiversidade , Carbono , Árvores
9.
Sci Rep ; 10(1): 10130, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576943

RESUMO

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.


Assuntos
Biodiversidade , Classificação/métodos , Florestas , Rios , Árvores/classificação , Brasil
10.
Ecol Evol ; 10(7): 3392-3401, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273996

RESUMO

Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large-seeded trees depends upon large-bodied vertebrates.We report on a long-running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence.Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large-bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large-bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers.Synthesis: The presumption that forests depleted of large-bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play.

11.
Ecology ; 101(7): e03052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239762

RESUMO

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Assuntos
Florestas , Madeira , África , Brasil , Ecossistema , Clima Tropical
12.
Ecology ; 101(5): e02996, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32012245

RESUMO

We took advantage of two natural experiments to investigate processes that regulate tree recruitment in gaps. In the first, we examined the recruitment of small and large saplings and trees into 31 gaps resulting from treefalls occurring between 1984 and 2015 in the 2.25-ha core area of a 4-ha tree plot at Cocha Cashu in Perú. In the second, we identified the tallest saplings recruiting into 69 gaps created during a violent wind storm in February 2000. In the established tree plot, we were able to compare the composition of saplings in the disturbance zones of gaps prior to, during, and subsequent to the period of gap formation. Recruitment in gaps was compared with that in "nofall" zones, areas within the plot that had not experienced a treefall at least since the early 1980s. Our results confirmed earlier findings that a consistently high proportion (~60%) of established saplings survived gap formation. Light demanding species, as proxied by mortality rates, recruited under all conditions, but preferentially during periods of gap formation, a pattern that was especially strong among gap pioneers. Similar results were noted, separately, for small and large saplings and trees recruiting at ≥10 cm dbh. One hundred percent of previously untagged trees recruiting into gaps in the first post-disturbance census were gap pioneers, suggesting rapid development. This conclusion was strongly supported in a follow-up survey taken of 69 gaps 19 months after they had been synchronously created in a wind storm. Ten species of gap pioneers, eight of which are not normally present in the advance regeneration, had attained heights of 6-10 m in 19 months. The 10 gap pioneers were dispersed, variously, by primates, bats, birds, and wind and reached maximum frequency in different-sized gaps (range <100 m2 to >1,000 m2 ). Both gap size and limited dispersal of zoochorous species into gaps serve as filters for establishment, creating a complex mosaic of conditions that enhances species diversity.


Assuntos
Aves , Árvores , Animais , Peru , Vento
13.
Sci Rep ; 9(1): 13822, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554920

RESUMO

Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.

15.
Ecology ; 100(5): e02642, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30712267

RESUMO

We monitored a close-spaced grid of 289 seed traps in 1.44 ha for 8.4 yr in an Amazonian floodplain forest. In a tree community containing hundreds of species, a median of just three to four species of tree seeds falls annually into each 0.5-m2 establishment site. The number of seed species reaching a given site increased linearly with time for the duration of the monitoring period, indicating a roughly random arrival of seed species in a given site-year. The number of seed species captured each year over the entire grid ranged from one-third to one-half of the total captured over the 8.4 yr of monitoring, revealing a substantial temporal component of variation in the seed rain. Seed rain at the 0.5-m2 scale displayed extreme spatial variability when all potentially viable seeds were tallied, whereas the rain of dispersed seeds was scant, more nearly uniform, and better mixed. Dispersal limitation, defined as failure of seeds to reach establishment sites, is ≥99% per year for a majority of species, explaining why seed augmentation experiments are often successful. Dispersal limitation has been evoked as an explanation for distance-dependent species turnover in tropical tree communities, but that interpretation contrasts with the fact that many Amazonian tree species possess large geographical ranges that extend for hundreds or thousands of kilometers. A better understanding of the processes that bridge the gap between the scales of seedling establishment and the regulation of forest composition will require new methodologies for studying dispersal on scales larger than those yet achieved.


Assuntos
Dispersão de Sementes , Clima Tropical , Florestas , Plântula , Sementes , Árvores
16.
Proc Natl Acad Sci U S A ; 116(2): 581-586, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584100

RESUMO

Explaining the maintenance of tropical forest diversity under the countervailing forces of drift and competition poses a major challenge to ecological theory. Janzen-Connell effects, in which host-specific natural enemies restrict the recruitment of juveniles near conspecific adults, provide a potential mechanism. Janzen-Connell is strongly supported empirically, but existing theory does not address the stable coexistence of hundreds of species. Here we use high-performance computing and analytical models to demonstrate that tropical forest diversity can be maintained nearly indefinitely in a prolonged state of transient dynamics due to distance-responsive natural enemies. Further, we show that Janzen-Connell effects lead to community regulation of diversity by imposing a diversity-dependent cost to commonness and benefit to rarity. The resulting species-area and rank-abundance relationships are consistent with empirical results. Diversity maintenance over long time spans does not require dispersal from an external metacommunity, speciation, or resource niche partitioning, only a small zone around conspecific adults in which saplings fail to recruit. We conclude that the Janzen-Connell mechanism can explain the maintenance of tropical tree diversity while not precluding the operation of other niche-based mechanisms such as resource partitioning.


Assuntos
Biodiversidade , Florestas , Modelos Biológicos , Clima Tropical
17.
Sci Rep ; 8(1): 1003, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343741

RESUMO

Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Modelos Estatísticos , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Brasil , Chrysobalanaceae/fisiologia , Fabaceae/fisiologia , Humanos , Polygonaceae/fisiologia
18.
Ecology ; 98(11): 2895-2903, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833033

RESUMO

Treefall gaps have long been a central feature of discussions about the maintenance of tree diversity in both temperate and tropical forests. Gaps expose parts of the forest floor to direct sunlight and create a distinctive microenvironment that can favor the recruitment into the community of so-called gap pioneers. This traditional view enjoys strong empirical support, yet has been cast into doubt by a much-cited article claiming that gaps are inherently "neutral" in their contribution to forest dynamics. We present concurrent data on seedfall and sapling recruitment into gaps vs. under a vertically structured canopy in an Amazonian floodplain forest in Peru. Our results strongly uphold the view of gaps as important generators of tree diversity. Our methods differed significantly from those employed by the neutralist group and can explain the contrasting outcomes. We found that seedfall into gaps differs both quantitatively and qualitatively from that falling under a multi-tiered canopy, being greatly enriched in wind-dispersed and autochorus species and sharply deficient in all types of zoochorous seeds. Despite a reduced input of zoochorous seeds, zoochorous species made up 79% of saplings recruiting into gaps, whereas wind-dispersed species made up only 1%. Cohorts of saplings recruiting into gaps are less diverse than those recruiting under a closed canopy (Fisher's alpha = 40 vs. 100) and compositionally distinct, containing many light-demanding species that rarely, if ever, recruit under shaded conditions. Saplings recruiting into gaps appear to represent a variable mix of shade-tolerant survivors of the initiating treefall and sun-demanding species that germinate subsequently.


Assuntos
Biodiversidade , Florestas , Ecossistema , Peru , Sementes , Árvores , Clima Tropical
19.
Ecology ; 97(12): 3326-3336, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27912026

RESUMO

The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests.


Assuntos
Ecossistema , Mamíferos/fisiologia , Comportamento Predatório/fisiologia , Árvores/classificação , Árvores/fisiologia , Animais , Tamanho Corporal , Dinâmica Populacional , Especificidade da Espécie , Clima Tropical
20.
Ecology ; 97(11): 2905-2909, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870047

RESUMO

Robert T. Paine, who passed away on 13 June 2016, is among the most influential people in the history of ecology. Paine was an experimentalist, a theoretician, a practitioner, and proponent of the "ecology of place," and a deep believer in the importance of natural history to ecological understanding. His scientific legacy grew from the discovery of a link between top-down forcing and species diversity, a breakthrough that led to the ideas of both keystone species and trophic cascades, and to our early understanding of the mosaic nature of biological communities, causes of zonation across physical gradients, and the intermediate-disturbance hypothesis of species diversity. Paine's influence as a mentor was equally important to the growth of ecological thinking, natural resource conservation, and policy. He served ecology as an Ecological Society of America president, an editor of the Society's journals, a member of and contributor to the National Academy of Sciences and the National Research Council, and an in-demand advisor to various state and federal agencies. Paine's broad interests, enthusiasm, charisma, and humor deeply affected our lives and the lives of so many others.


Assuntos
Ecologia , Ecologia/história , História do Século XX , Mentores/história , Publicações/história , Pesquisa/história , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...