Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257625

RESUMO

In the vast realm of optical fiber sensing, where precision and innovation converge, Fiber Bragg Gratings (FBGs) stand as luminaries, casting their influence across myriad applications [...].

2.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960466

RESUMO

This work presents an extensive, comparative study of the gamma and electron radiation effects on the behaviour of femtosecond laser-inscribed fibre Bragg gratings (FBGs) using the point-by-point and plane-by-plane inscription methods. The FBGs were inscribed in standard telecommunication single mode silica fibre (SMF28) and exposed to a total accumulated radiation dose of 15 kGy for both gamma and electron radiation. The gratings' spectra were measured and analysed before and after the exposure to radiation, with complementary material characterisation using Fourier transform infrared (FTIR) spectroscopy. Changes in the response of the FBGs' temperature coefficients were analysed on exposure to the different types of radiation, and we consider which of the two inscription methods result in gratings that are more robust in such harsh environments. Moreover, we used the FTIR spectroscopy to locate which chemical bonds are responsible for the changes on temperature coefficients and which are related with the optical characteristics of the FBGs.


Assuntos
Lasers
3.
Sensors (Basel) ; 21(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801791

RESUMO

A monolithic fiber laser operating in the short wavelength infrared that is suitable for CO2 gas sensing applications is proposed and presented. The current study reports a laser design based on the direct inscription of a monolithic Fabry-Perot (FP) cavity in a thulium-doped optical fiber using the femtosecond laser (FsL) plane-by-plane inscription method to produce the cavity mirrors. The FP cavity was inscribed directly into the active fiber using two wavelength-identical fiber Bragg gratings (FBGs), one with high and one with low reflectivity. Initially the effective length of the fiber was defined using a single high reflectivity FBG and subsequently a very weak FBG was inscribed at the other end of the fiber in order to demonstrate a fully monolithic fiber laser. All fiber lasers were designed for continuous wave operation at 1950 nm and characterized with respect to the power output, slope efficiency, stability, and effective resonator length. The performance of the presented monolithic laser cavities was evaluated using the same active fiber as a reference fiber spliced to FBGs inscribed in passive fiber; an improvement exceeding 12% slope efficiency is reported for the presented monolithic laser.

4.
Polymers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120950

RESUMO

We experimentally address simple, low-cost and effective methods for the cleaving of multimode CYTOP optical fibers using razor blades. The quality of fiber end-face preparation depends on various parameters. The necessity of the near-field intensity pattern inspection for adequate evaluation of cleaved fiber end-faces is demonstrated. Razor blades of different manufacturers are evaluated for manual cleaving, as well as automated cleaving with controlled speed and temperature. The cleaving technique with both slowed motion of the razor blade and increased temperature up to 90 °C demonstrated the best quality of fiber end-faces. Typical cleaving defects are highlighted, whereas the cleave quality was characterized in terms of the light intensity profile emitted by the fiber in near field.

5.
Opt Lett ; 44(21): 5177-5180, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674960

RESUMO

We report on an in-fiber Brewster device with a 45° tilted fiber grating (TFG) directly written by a plane-by-plane femtosecond laser inscription method. Up to 10 dB polarization-dependent loss was achieved, proving effective polarizing functionality. Furthermore, we employ it as an in-line polarizer to successfully mode lock a fiber laser through the nonlinear polarization rotation technique. A stable soliton pulse train has been generated at 1563.64 nm with a pulse width of 624 fs and pulse energy of 0.42 nJ. With proper polarization adjustment, the laser also can operate in a noise-like regime. The parameters of this kind of 45°-TFG can be flexibly customized owing to the high flexibility and controllability of the femtosecond laser-inscription approach. In particular, such in-fiber polarizing devices inscribed by femtosecond laser inscription without removing the fiber coating are extremely robust for fiber lasers working at a broad wavelength region including the mid-infrared.

6.
Opt Lett ; 44(21): 5346-5349, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675004

RESUMO

In this Letter, we report, to the best of our knowledge, the first inscription of long period gratings (LPGs) in a multimode cyclic transparent optical polymer (CYTOP) fiber using a femtosecond laser inscription method. The LPG was inscribed directly in the center of the fiber core, tailored for operation at 1560 nm. The CYTOP-LPG was characterized in transmission, and its response for relative humidity and temperature was measured. The humidity measurements, to the best our knowledge, are the first for a POF-LPG, whereas the temperature sensitivity is significantly higher than reported in other works. In addition, dynamic mechanical measurements were performed comparing the mechanical characteristics of the laser exposed sections of the polymer fiber, where the LPG was inscribed, with the unexposed regions.

7.
Sensors (Basel) ; 19(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252550

RESUMO

We present a polymer fibre Bragg grating sensor and its sensitivity to gamma radiation by observing the reflected spectral profile. The Bragg grating is femtosecond inscribed within a perfluorinated CYTOP fibre and the alteration of the Bragg wavelength corresponds to the total radiation dose received. Over a total dose of 41 k Gy, the fibre demonstrates a sensitivity of - 26.2 p m / k Gy and a resolution of 40 Gy. Under active consideration for the instrumentation of nuclear waste repositories, this study gives a better understanding of the effects of gamma radiation upon Bragg gratings in CYTOP fibres.

8.
Materials (Basel) ; 11(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453561

RESUMO

We developed a flexible support with embedded polymer optical fiber (POF) sensors for the assessment of human⁻robot interaction forces. The supports were fabricated with a three-dimensional (3D) printer, where an acrylonitrile butadiene styrene (ABS) rigid structure was used in the region of the support in which the exoskeleton was attached, whereas a thermoplastic polyurethane (TPU) flexible structure was printed in the region where the users placed their legs. In addition, fiber Bragg gratings (FBGs), inscribed in low-loss, cyclic, transparent, optical polymer (CYTOP) using the direct-write, plane-by-plane femtosecond laser inscription method, were embedded in the TPU structure. In this case, a 2-FBG array was embedded in two supports for human⁻robot interaction force assessment at two points on the users' legs. Both FBG sensors were characterized with respect to temperature and force; additionally, the creep response of the polymer, where temperature influences the force sensitivity, was analyzed. Following the characterization, a compensation method for the creep and temperature influence was derived, showing relative errors below 4.5%. Such errors were lower than the ones obtained with similar sensors in previously published works. The instrumented support was attached to an exoskeleton for knee rehabilitation exercises, where the human⁻robot interaction forces were measured in flexion and extension cycles.

9.
Opt Lett ; 43(19): 4799-4802, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272743

RESUMO

We present results for the mechanical characterization of a bisphenol-A acrylate-based polymer optical fiber (POF) manufactured using a novel light polymerization spinning (LPS) process. The particular manufacturing process allows the development of POFs having unique mechanical characteristics, which result from an exceptionally low Young's modulus. The lower Young's modulus enables optical sensors for measuring stress or pressure with improved sensitivity and potentially a higher tunable mechanical range than conventional POFs. Moreover, properties such as the storage modulus variations with respect to the temperature and humidity were studied. Fiber Bragg gratings (FBGs), were inscribed in the POF using the plane-by-plane femtosecond laser, direct-write method for selective FBG mode excitation, and were characterized for changes to temperature, pressure, and relative humidity. The response of FBGs in this LPS-POF for all the three aforementioned measurands was several times higher than that measured for conventional POFs.

10.
Opt Lett ; 43(9): 2169-2172, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714781

RESUMO

We study the modal behavior of plane-by-plane femtosecond laser fabricated tilted fiber Bragg gratings (FBGs). The focus is on the differential strain and temperature sensitivities between the cladding mode resonances of an nth grating order and those of the (n-i)th orders (with i=1-n), which are collocated in the same wavelength range. Whereas the Bragg mode exhibits an axial strain sensitivity of 1.2 pm/µÏµ, we experimentally show that the strain sensitivity of ultrahigh-order cladding modes is negative and at -1.99 pm/µÏµ in the same spectral window. Using a finite element mode solver, the modal refractive index value is computed to be well below 1, thus confirming that these modes, in reality, are leaky modes.

11.
Polymers (Basel) ; 10(6)2018 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-30966708

RESUMO

This paper demonstrates the use of polymer optical fiber Bragg gratings (POFBGs) for angle measurements over a range of different oscillatory frequencies. The POFBGs are inscribed in low-loss, cyclic transparent amorphous fluoropolymers (CYTOP) and are imprinted using the direct-write, plane-by-plane femtosecond laser inscription method. As the polymer has a viscoelastic response and given that the Young's modulus depends on the oscillatory frequency, a compensation technique for sensor frequency cross-sensitivity and hysteresis is proposed and verified. Results show that the proposed compensation technique is able to provide a root mean squared error (RMSE) reduction of 44%, and a RMSE as low as 2.20° was obtained when compared with a reference potentiometer. The hysteresis reduction provided by the proposed technique is 55%, with hysteresis <0.01. The results presented in this paper can pave the way for movement analysis with POFBG providing higher sensitivity and low hysteresis over a large range of motion frequencies.

12.
Opt Lett ; 42(24): 5198-5201, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240171

RESUMO

In this Letter, we report a flexible, plane-by-plane direct write inscription method for the development of tailored, tilted fiber Bragg gratings using a femtosecond laser. Compared to ultraviolet or femtosecond laser inscription based on the phase mask, interferometric, or point-by-point methods, the presented approach is far more flexible and offers several advantages. Laser inscription is made through the fiber coating, while the grating planes are controlled to minimize birefringence, with precise control over the wavelength location and strength of cladding modes. Tenth-order gratings were produced in the C+L bands so that higher-order gratings could be studied at shorter wavelengths. In particular, we show that the refractometric sensitivity depends on the grating order, ranging from ∼28 nm/refractive index unit (RIU) at ∼1510 nm to ∼13 nm/RIU at ∼1260 nm.

13.
Sensors (Basel) ; 17(12)2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29258166

RESUMO

We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient's mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF's high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems.


Assuntos
Pressão , , Marcha , Humanos , Reprodutibilidade dos Testes , Sapatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...