RESUMO
The highly blistering sulfur mustard analogue agent T (bis(2-chloroethylthioethyl) ether), also known as O-mustard or oxy-mustard, is a common impurity in military grade sulfur mustard (SM) and a component of mixtures such as "HT" that are still found in old munitions. Together with sesquimustard (Q), it is the most important SM analogue and tightly regulated as a Schedule 1 chemical under the Chemical Weapons Convention. We report the adducts of T with nucleophilic Cys34 and other residues in human serum albumin (HSA) formed in vitro. A micro liquid chromatography electrospray ionization high-resolution tandem-mass spectrometry method (µLC-ESI MS/HR MS) was developed for the detection and identification of biomarker peptides alkylated by a T-derived hydroxyethylthioethyloxyethylthioethyl (HETEOETE)-moiety (as indicated by an asterisk below). Following proteolysis of T-exposed human plasma with pronase, the dipeptide Cys34*Pro and the single amino acid residue His* were produced. The use of proteinase K yielded Cys34*ProPhe and the use of pepsin generated ValThrGlu48*Phe, AlaGlu230*ValSerLysLeu, and LeuGlyMet329*Phe. Corresponding peptide-adducts of SM and Q were detected in a common workflow that in principle allowed the estimation of the mustard or mustard composition encountered during exposure. Novel adducts of Q at the Glu230 and Met239 residues were detected and are reported accordingly. Based on molecular dynamics simulations, we identified regular interactions of the Cys34(-HETEOETE)-moiety with several glutamic acid residues in HSA including Glu86, which is not an obvious interaction partner by visual inspection of the HSA crystal structure. The existence of this and other intramolecular cross-links was experimentally proven for the first time.
Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Substâncias para a Guerra Química/química , Gás de Mostarda/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Reagentes de Ligações Cruzadas/químicaRESUMO
Sulfur mustard (SM) is a highly toxic chemical warfare agent. Exposure to SM results in various pathologies including skin lesions with subsequent impaired wound healing. To date, there are no effective treatments available. Here we discover a SM-triggered pathomechanism involving miR-497-5p and its target survivin which contributes to keratinocyte dysfunction. Transcriptome analysis using RNA-seq in normal human epidermal keratinocytes (NHEK) revealed that SM evoked differential expression of 1896 mRNAs and 25 miRNAs with many of these RNAs known to be involved in keratinocyte function and wound healing. We demonstrated that keratinocyte differentiation and proliferation were efficiently regulated by miRNAs induced in skin cells after exposure to SM. The inhibition of miR-497-5p counteracted SM-induced premature differentiation and stimulated proliferation of NHEK. In addition, we showed that microneedle-mediated transdermal application of lipid-nanoparticles containing miR-497-5p inhibitor restored survivin biosynthesis and cellular functionality upon exposure to SM using human skin biopsies. Our findings expand the current understanding of SM-associated molecular toxicology in keratinocytes and highlight miR-497-5p as feasible clinical target for specific skin therapy in SM-exposed patients and beyond.
Assuntos
Queratinócitos , MicroRNAs , Gás de Mostarda , Pele , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Survivina/metabolismo , Survivina/genética , Substâncias para a Guerra Química/toxicidadeRESUMO
INTRODUCTION: Scientific societies aim to provide a collective voice and unified stance on important issues. The Clinical Toxicology Recommendations Collaborative was formed in 2016 to develop evidence- and consensus-based recommendations for the management of patients exposed to common and/or serious poisonings for which the management is unclear or controversial. ORGANIZATION: The Clinical Toxicology Recommendations Collaborative is led jointly by the American Academy of Clinical Toxicology, the Asia Pacific Association of Medical Toxicology, and the European Association of Poison Centres and Clinical Toxicologists. The Governance Committee is chaired by a Past-President of one of these Societies and comprised of the six Presidents and Immediate Past-Presidents of the three Societies. A Steering Committee oversees the process of each project workgroup. METHODOLOGY: The overall process is guided by standards set forth by the Institute of Medicine for developing trustworthy guidelines and the Appraisal of Guidelines for Research and Evaluation Instrument. Systematic reviews are produced using the framework set in the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) methodology. Workgroup members jointly review the evidence and prepare statements on which they vote anonymously using a 9-point Likert scale. A two-round modified Delphi method is used to reach a consensus on clinical recommendations using the RAND/UCLA Appropriateness Method. Final recommendations are approved by unanimous consent of the workgroup and are expressed as both levels of evidence and strength of recommendations. LIMITATIONS: The major limitations of the Clinical Toxicology Recommendations Collaborative process centre around the amount and quality of evidence, the assessment of that evidence, and the voting of the panel. CONCLUSIONS: By using a transparent evidence- and consensus-based approach to produce systematic reviews and clinical recommendations, the Clinical Toxicology Recommendations Collaborative aims to create an international framework for clinical toxicology education and decision-making and foster positive change for the benefit of poisoned patients.
Assuntos
Toxicologia , Humanos , Consenso , Toxicologia/organização & administração , Medicina Baseada em Evidências , Guias como AssuntoRESUMO
We herein present for the first time the phosphylated (*) tetrapeptide (TP)-adduct GlyGluSer198*Ala generated from butyrylcholinesterase (BChE) with proteinase K excellently suited for the verification of exposure to toxic organophosphorus nerve agents (OPNA). Verification requires bioanalytical methods mandatory for toxicological and legal reasons. OPNA react with BChE by phosphonylation of the active site serine residue (Ser198) forming one of the major target protein adducts for verification. After its enzymatic cleavage with pepsin, the nonapeptide (NP) PheGlyGluSer*AlaGlyAlaAlaSer is typically produced as biomarker. Usually OPNA occur as racemic mixtures of phosphonic acid derivatives with the stereocenter at the phosphorus atom, e.g. (±)-VX. Both enantiomers react with BChE, but the adducted NP does not allow their chromatographic distinction. In contrast, the herein introduced TP-adducts appeared as two peaks when using a stationary reversed phase (1.8 µm) in micro-liquid chromatography-electrospray ionisation tandem-mass spectrometry (µLC-ESI MS/MS) analysis. These two peaks represent diastereomers of the (+)- and (-)-OPNA adducted to the peptide that comprises chiral L-amino acids exclusively. Concentration- and time-dependent effects of adduct formation with (±)-VX and its pure enantiomers (+)- and (-)-VX as well as with (±)-cyclosarin (GF) were investigated in detail characterising enantioselective adduct formation, stability, ageing and spontaneous reactivation. The method was also successfully applied to samples from a real case of pesticide poisoning as well as to samples of biomedical proficiency tests provided by the Organisation for the Prohibition of Chemical Weapons.
Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Compostos Organotiofosforados , Butirilcolinesterase/metabolismo , Espectrometria de Massas em Tandem/métodos , Compostos Organotiofosforados/toxicidade , Compostos Organofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/químicaRESUMO
VX is a highly toxic organophosphorus nerve agent that reacts with a variety of endogenous proteins such as serum albumin under formation of adducts that can be targeted by analytical methods for biomedical verification of exposure. Albumin is phosphonylated by the ethyl methylphosphonic acid moiety (EMP) of VX at various tyrosine residues. Additionally, the released leaving group of VX, 2-(diisopropylamino)ethanethiol (DPAET), may react with cysteine residues in diverse proteins. We developed and validated a microbore liquid chromatography-electrospray ionization high-resolution tandem mass spectrometry (µLC-ESI MS/HR MS) method enabling simultaneous detection of three albumin-derived biomarkers for the analysis of rat plasma. After pronase-catalyzed cleavage of rat plasma proteins single phosphonylated tyrosine residues (Tyr-EMP), the Cys34(-DPAET)Pro dipeptide as well as the rat-specific LeuProCys448(-DPAET) tripeptide were obtained. The time-dependent adduct formation in rat plasma was investigated in vitro and biomarker formation during proteolysis was optimized. Biomarkers were shown to be stable for a minimum of four freeze-and-thaw cycles and for at least 24 h in the autosampler at 15 °C thus making the adducts highly suited for bioanalysis. Cys34(-DPAET)Pro was superior compared to the other serum biomarkers considering the limit of identification and stability in plasma at 37 °C. For the first time, Cys34(-DPAET)Pro was detected in in vivo specimens showing a time-dependent concentration increase after subcutaneous exposure of rats underlining the benefit of the dipeptide disulfide biomarker for sensitive analysis.
Assuntos
Agentes Neurotóxicos , Animais , Ratos , Agentes Neurotóxicos/toxicidade , Agentes Neurotóxicos/química , Albumina Sérica Humana/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Compostos Organofosforados , Dipeptídeos , Biomarcadores , TirosinaRESUMO
Isolated organ models are a versatile tool for pharmacological and toxicological research. Small bowel has been used to assess the inhibition of smooth muscle contraction by opioids. In the present study, we set out to establish a pharmacologically stimulated rat bowel model. The effects of carfentanil, remifentanil and the new synthetic opioid U-48800 and their respective antagonists naloxone, nalmefene and naltrexone were studied in a small bowel model in rats. The IC50 values of the tested opioids were as follows: carfentanil (IC50 = 0.02 µmol/L, CI 0.02-0.03 µmol/L) â« remifentanil (IC50 = 0.51 µmol/L, CI 0.40-0.66 µmol/L) â« U-48800 (IC50 = 1.36 µmol/L, CI 1.20-1.54 µmol/L). The administration of the opioid receptor antagonists naloxone, naltrexone and nalmefene led to progressive, parallel rightward shifts of the dose-response curves. Naltrexone was most potent in antagonizing the effects of U-48800, whereas naltrexone and nalmefene were most effective in antagonizing the effects of carfentanil. In summary, the current model seems to be a robust tool to study opioid effects in a small bowel model without the necessity of using electrical stimulation.
Assuntos
Analgésicos Opioides , Naltrexona , Ratos , Animais , Analgésicos Opioides/toxicidade , Naltrexona/farmacologia , Remifentanil , Antagonistas de Entorpecentes/farmacologia , Naloxona/farmacologia , Receptores Opioides , Músculo LisoRESUMO
We herein present for the first time a micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) procedure to detect phosphonylated tyrosine (Tyr) and lysine (Lys) residues obtained from human hair exposed to organophosphorus nerve agents (OPNA). In general, toxic OPNA react with endogenous blood proteins causing the formation of adducts representing well-known targets for biomedical analysis to prove exposure. In contrast, no protein-derived biomarker has been introduced so far to document local exposure of hair. Accordingly, we developed and characterized a µLC-ESI MS/HR MS method for the analysis of scalp hair exposed to OPNA in vitro. Type I and Type II keratin from hair was dissolved during lysis, precipitated and subjected to pronase-catalyzed hydrolysis yielding single adducted Lys and in a much higher amount Tyr residues. Exposure to sarin caused the adduction of an isopropyl methylphosphonic acid moiety and exposure to VX yielded adducts of ethyl methylphosphonic acid, well suited as biomarkers of exposure. These were of appropriate stability in the autosampler for 24 h. The biomarker yield obtained from hair of six individuals as well as from hair of six different parts of the body of one individual (armpit, beard, leg, arm, scalp, and pubic) differed reasonably indicating the variable individual protein composition and structure of hair. Exposed hair stored at ambient temperature for 9 weeks with contact to air and daylight showed stability of all adducts and therefore their suitability for verification of exposure.
Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/metabolismo , Sarina , Lisina , Compostos Organofosforados , Tirosina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores , Cabelo/química , Substâncias para a Guerra Química/análiseRESUMO
An important target in toxicology is the ion channel known as human transient receptor potential ankyrin 1 (hTRPA1). It is triggered by a variety of chemicals, including the alkylating chemical warfare agent sulfur mustard (SM). The activation potentials of structural analogs including O- and sesquimustard, nitrogen mustards (HN1, HN2, and HN3), and related chemotherapeutic drugs (bendamustine, cycylophosphamide, and ifosfamide) were examined in the current study. The aequorin assay was used to measure changes in intracellular calcium levels in human hTRPA1 overexpressing HEK293 cells. The XTT assay was used to determine cytotoxicity. The data presented here highlight that all investigated alkylating substances, with the exception of cyclophosphamide and ifosfamide, cause the activation of hTRPA1. Cytotoxicity and activation of hTRPA1 were found to be related. Compounds with high reactivity had higher cytotoxicity and vice versa. However, inhibiting hTRPA1 with the specific inhibitor AP18 could not reduce the cytotoxicity induced by alkylating agents. As a result, hTRPA1 does not play a significant role in the cytotoxicity of alkylating agents.
Assuntos
Ifosfamida , Compostos de Mostarda Nitrogenada , Humanos , Canal de Cátion TRPA1 , Células HEK293 , Alquilantes/toxicidade , NitrogênioRESUMO
Organophosphorus compounds (OPCs) are highly toxic compounds that can block acetylcholine esterase (AChE) and thereby indirectly lead to an overstimulation of muscarinic and nicotinic acetylcholine receptors (nAChRs). The current treatment with atropine and AChE reactivators (oximes) is insufficient to prevent toxic effects, such as respiratory paralysis, after poisonings with various OPCs. Thus, alternative treatment options are required to increase treatment efficacy. Novel therapeutics, such as the bispyridinium non-oxime MB327, have been found to reestablish neuromuscular transmission by interacting directly with nAChR, probably via allosteric mechanisms. To rationally design new, more potent drugs addressing nAChR, knowledge of the binding mode of MB327 is fundamental. However, the binding pocket of MB327 has remained elusive. Here, we identify a new potential allosteric binding pocket (MB327-PAM-1) of MB327 located at the transition of the extracellular to the transmembrane region using blind docking experiments and molecular dynamics simulations. MB327 forms striking interactions with the receptor at this site. The interacting amino acids are highly conserved among different subunits and different species. Correspondingly, MB327 can interact with several nAChR subtypes from different species. We predict by rigidity analysis that MB327 exerts an allosteric effect on the orthosteric binding pocket and the transmembrane domain after binding to MB327-PAM-1. Furthermore, free ligand diffusion MD simulations reveal that MB327 also has an affinity to the orthosteric binding pocket, which agrees with recently published results that related bispyridinium compounds show inhibitory effects via the orthosteric binding site. The newly identified binding site allowed us to predict structural modifications of MB327, resulting in the more potent resensitizers PTM0062 and PTM0063.
Assuntos
Intoxicação por Organofosfatos , Receptores Nicotínicos , Humanos , Intoxicação por Organofosfatos/tratamento farmacológico , Receptores Nicotínicos/metabolismo , Compostos de Piridínio/farmacologia , Sítios de Ligação , Oximas/uso terapêuticoRESUMO
Transient receptor potential (TRP) channels are important in the sensing of pain and other stimuli. They may be triggered by electrophilic agonists after covalent modification of certain cysteine residues. Sulfur mustard (SM) is a banned chemical warfare agent and its reactivity is also based on an electrophilic intermediate. The activation of human TRP ankyrin 1 (hTRPA1) channels by SM has already been documented, however, the mechanism of action is not known in detail. The aim of this work was to purify hTRPA1 channel from overexpressing HEK293 cells for identification of SM-induced alkylation sites. To confirm hTRPA1 isolation, Western blot analysis was performed showing a characteristic double band at 125 kDa. Immunomagnetic separation was carried out using either an anti-His-tag or an anti-hTRPA1 antibody to isolate hTRPA1 from lysates of transfected HEK293 cells. The identity of the channel was confirmed by micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry. Following SM exposure, hTRPA1 channel modifications were found at Cys462 and Cys665, as well as at Asp339 and Glu341 described herein for the first time. Since Cys665 is a well-known target of hTRPA1 agonists and is involved in hTRPA1 activation, SM-induced modifications of cysteine, as well as aspartic acid and glutamic acid residues may play a role in hTRPA1 activation. Considering hTRPA1 as a target of other SM-related chemical warfare agents, analogous adducts may be predicted and identified applying the analytical approach described herein.
Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Gás de Mostarda/toxicidade , Gás de Mostarda/química , Canal de Cátion TRPA1/genética , Células HEK293 , Cisteína , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química , AlquilaçãoRESUMO
Motor neurons (MNs) derived from human-induced pluripotent stem cells (hiPSC) hold great potential for the treatment of various motor neurodegenerative diseases as transplantations with a low-risk of rejection are made possible. There are many hiPSC differentiation protocols that pursue to imitate the multistep process of motor neurogenesis in vivo. However, these often apply viral vectors, feeder cells, or antibiotics to generate hiPSC and MNs, limiting their translational potential. In this study, a virus-, feeder-, and antibiotic-free method was used for reprogramming hiPSC, which were maintained in culture medium produced under clinical good manufacturing practice. Differentiation into MNs was performed with standardized, chemically defined, and antibiotic-free culture media. The identity of hiPSC, neuronal progenitors, and mature MNs was continuously verified by the detection of specific markers at the genetic and protein level via qRT-PCR, flow cytometry, Western Blot, and immunofluorescence. MNX1- and ChAT-positive motoneuronal progenitor cells were formed after neural induction via dual-SMAD inhibition and expansion. For maturation, an approach aiming to directly mature these progenitors was compared to an approach that included an additional differentiation step for further specification. Although both approaches generated mature MNs expressing characteristic postmitotic markers, the direct maturation approach appeared to be more efficient. These results provide new insights into the suitability of two standardized differentiation approaches for generating mature MNs, which might pave the way for future clinical applications.
RESUMO
Chronic wounds, skin blisters, and ulcers are the result of skin exposure to the alkylating agent sulfur mustard (SM). One potential pathomechanism is senescence, which causes permanent growth arrest with a pro-inflammatory environment and may be associated with a chronic wound healing disorder. SM is known to induce chronic senescence in human mesenchymal stem cells which are subsequently unable to fulfill their regenerative function in the wound healing process. As dermal fibroblasts are crucial for cutaneous wound healing by being responsible for granulation tissue formation and synthesis of the extracellular matrix, SM exposure might also impair their function in a similar way. This study, therefore, investigated the SM sensitivity of primary human dermal fibroblasts (HDF) by determining the dose-response curve. Non-lethal concentrations LC1 (3 µM) to LC25 (65 µM) were used to examine the induction of senescence. HDF were exposed once to 3 µM, 13 µM, 24 µM, 40 µM or 65 µM SM, and were then cultured for 31 days. Changes in morphology as well as at the genetic and protein level were investigated. For the first time, HDF were shown to undergo senescence in a time- and concentration-dependent manner after SM exposure. They developed a characteristic senescence phenotype and expressed various senescence markers. Proinflammatory cytokines and chemokines were significantly altered in SM-exposed HDF as part of a senescence-associated secretory phenotype. The senescent fibroblasts can thus be considered a contributor to the SM-induced chronic wound healing disorder and might serve as a new therapeutic target in the future.
Assuntos
Gás de Mostarda , Alquilantes , Senescência Celular , Citocinas , Fibroblastos , Humanos , Gás de Mostarda/toxicidade , PeleRESUMO
In the recent past, the blister agent sulfur mustard (SM) deployed by the terroristic group Islamic State has caused a huge number of civilian and military casualties in armed conflicts in the Middle East. The vaporized or aerolized agent might be inhaled and have direct contact to skin and hair. Reaction products of SM with plasma proteins (adducts) represent well-established systemic targets for the bioanalytical verification of exposure. The SM-derived hydroxyethylthioethyl (HETE)-moiety is attached to nucleophilic amino acid side chains and allows unambiguous adduct detection. For shipping of common blood and plasma samples, extensive packaging rules are to be followed as these matrices are considered as potentially infectious material. In contrast, hair is considered as non-infectious thus making its handling and transportation much less complicated. Therefore, we addressed this matrix to develop a procedure for bioanalytical verification. Following optimized lysis of SM-treated human scalp hair and pepsin-catalyzed proteolysis of adducts of keratin type I and II, microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) was used to detect three alkylated keratin-derived biomarker peptides: AE(-HETE)IRSDL, FKTIE(-HETE)EL, and LE(-HETE)TKLQF simultaneously. All bear the HETE-moiety bound to a glutamic acid residue. Protein adducts were stable for at least 14 weeks at ambient temperature and contact to air, and were not affected by washing the hair with shampoo. The biomarker peptides were also obtained from beard, armpit, abdominal, and pubic hair. This is the first report introducing stable local peptide adduct biomarkers from hair, that is easily accessible by a non-invasive sampling process.
Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Biomarcadores , Substâncias para a Guerra Química/química , Cabelo/química , Humanos , Ácidos Hidroxieicosatetraenoicos , Queratinas , Gás de Mostarda/química , Gás de Mostarda/toxicidade , Peptídeos , Albumina Sérica Humana/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodosRESUMO
Sulfur mustard (SM, bis[2-chloroethyl]-sulfide) is a banned chemical warfare agent deployed in the violent conflict in the Middle East poisoning humans and animals. For legal reasons, bioanalytical methods are mandatory proving exposure to SM. Reaction products (adducts) of SM with endogenous proteins, for example, serum albumin (SA), are valuable long-lived targets for analysis. Whereas nearly all methods known so far focus on human proteins, we address for the first time neat chicken SA and avian serum from chicken, duck, and ostrich. After proteolysis, protein precipitation, evaporation of the supernatant, and re-dissolution analysis were performed by micro-liquid chromatography-electrospray ionization tandem-mass spectrometry in the selected reaction monitoring mode, µLC-ESI MS/MS (SRM), for detection of the hydroxyethylthioethyl product ion [HETE]+ at m/z 105.0. After in vitro incubation with SM and pronase-catalyzed proteolysis, the alkylated amino acids Glu(-HETE) and His(-HETE) were detected. Both borne the SM-characteristic HETE-moiety bound to their side chain. The eightfold deuterated SM analog (d8-SM) was also applied to support adduct identification. Proteolysis conditions were optimized with respect to pH (8.0), temperature (50°C), and time to maximize the yield of Glu(-HETE) (30 min) and His(-HETE) (180 min). Amino acid adducts were stable in the autosampler for at least 24 h. Protein-adducts were stable in serum at -30°C for at least 33 days and for three freeze-and-thaw cycles. At the body temperature of chicken (+40°C), Glu(-HETE) was degraded in serum (period of half-change 3 days), whereas His(-HETE) remained stable. The presented method broadens the toolbox of procedures to document poisoning with SM.
Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Substâncias para a Guerra Química/análise , Ácido Glutâmico , Histidina , Ácidos Hidroxieicosatetraenoicos , Gás de Mostarda/química , Albumina Sérica/metabolismo , Albumina Sérica Humana/química , Espectrometria de Massas em Tandem/métodosRESUMO
Organophosphorus (OP) nerve agents were used for chemical warfare, assassination, and attempted murder of individuals. Therefore, forensic methods are required to identify known and unknown incorporated OP poisons. Serum is tested for the presence of covalent reaction products (adducts) of the toxicant with, e.g., butyrylcholinesterase (BChE) typically by targeted analysis, thus only detecting known OP adducts. We herein present a nontargeted two-step mass spectrometry (MS)-based workflow taking advantage of a high-resolution (HR) Orbitrap mass spectrometer and its option for in-source collision-induced dissociation (IS-CID) highly valuable for the detection of unknown agents. BChE adducts are extracted by immunomagnetic separation and proteolyzed with pepsin yielding a phosphylated nonapeptide (NP) biomarker NP(OP). In step 1, the sample is separated by micro liquid chromatography (µLC) detecting the NP(OP) by nontargeted HR MS followed by data-dependent tandem-MS (ddMS2). Extracted ion chromatograms of diagnostic product ions at m/z 778.33661, 673.29402, and 602.25690 reveal the accurate mass of the NP(OP) precursor ion as well as the elemental composition of the adducted phosphyl moiety. Considering this information, a second µLC run is performed (step 2) for nonselective IS-CID of NP(OP) yielding the cleaved charged phosphyl moiety. This fragment ion is immediately subjected to targeted CID in parallel reaction monitoring (PRM). The accurate mass of its product ions allows the determination of their elemental composition and thus supports its structural elucidation. The described workflow was exemplarily applied to NP(OP) of three Tamelin esters and VX providing highly appropriate abilities for the detection of adducts even of unknown OP poisons like Novichok agents.
Assuntos
Butirilcolinesterase , Agentes Neurotóxicos , Humanos , Separação Imunomagnética , Agentes Neurotóxicos/química , Espectrometria de Massas em Tandem/métodos , Fluxo de TrabalhoRESUMO
In poisoning with organophosphorus compounds (OP), patients can only profit from the regeneration of acetylcholinesterase, when the poison load has dropped below a toxic level. Every measure that allows an increase of synaptic acetylcholinesterase (AChE) activity at the earliest is essential for timely termination of the cholinergic crisis. Only drug-induced reactivation allows fast restoration of the inhibited AChE. Obidoxime and pralidoxime have proved to be able to reactivate inhibited cholinesterase thereby saving life of poisoned animals. A plasma level of obidoxime or pralidoxime allowing reactivation in humans poisoned by OP can be adjusted. There is no doubt that obidoxime and pralidoxime are able to reactivate OP-inhibited AChE activity in poisoned patients, thereby increasing AChE activity and contributing substantially to terminate cholinergic crisis. Hence, a benefit may be expected when substantial reactivation is achieved. A test system allowing determination of red blood cell AChE activity, reactivatability, inhibitory equivalents and butyrylcholinesterase activity is available for relatively low cost. If any reactivation is possible while inhibiting equivalents are present, oxime therapy should be maintained. In particular, when balancing the benefit risk assessment, obidoxime or palidoxime should be given as soon as possible and as long as a substantial reactivation may be expected.
Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Humanos , Animais , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas/uso terapêutico , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/uso terapêutico , Acetilcolinesterase , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase , Inibidores da ColinesteraseRESUMO
The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M-1 min-1) towards VX and a preferential hydrolysis of the more toxic P(-) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg-1 i.v.: PTE-2 dosed at 1.3 mg kg-1 i.v. (PTE-2.1) and 2.6 mg kg-1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg-1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.
Assuntos
Substâncias para a Guerra Química/toxicidade , Compostos Organotiofosforados/toxicidade , Hidrolases de Triester Fosfórico/farmacologia , Animais , Caulobacteraceae/enzimologia , Inibidores da Colinesterase/toxicidade , Masculino , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/genética , Engenharia de Proteínas , Ratos , Ratos Wistar , EstereoisomerismoRESUMO
Organophosphorus compound pesticides (OP) are widely used in pest control and might be misused for terrorist attacks. Although acetylcholinesterase (AChE) inhibition is the predominant toxic mechanism, OP may induce pneumonia and formation of lung edema after poisoning and during clinical treatment as life-threatening complication. To investigate the underlying mechanisms, rat precision-cut lung slices (PCLS) were exposed to the OP parathion, malathion and their biotransformation products paraoxon and malaoxon (100-2000 µmol/L). Airway response, metabolic activity, release of LDH, cytokine expression and oxidative stress response were analyzed. A concentration-dependent inhibition of airway relaxation was observed after exposure with the oxon but not with the thion-OP. In contrast, cytotoxic effects were observed for both forms in higher concentrations. Increased cytokine expression was observed after exposure to parathion and paraoxon (IL-6, GM-CSF, MIP-1α) and IL-6 expression was dependent on NFκB activation. Intracellular GSH levels were significantly reduced by all four tested OP but an increase in GSSG and HO-1 expression was predominantly observed after malaoxon exposure. Pretreatment with the antioxidant N-acetylcysteine reduced malaoxon but not paraoxon-induced cytotoxicity. PCLS as a 3D lung model system revealed OP-induced effects depending on the particular OP. The experimental data of this study contribute to a better understanding of OP toxicity on cellular targets and may be a possible explanation for the variety of clinical outcomes induced by different OP.
Assuntos
Praguicidas , Acetilcolinesterase , Animais , Antioxidantes/farmacologia , Pulmão , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , RatosRESUMO
For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 µM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.
Assuntos
Substâncias para a Guerra Química/análise , Gás de Mostarda/análogos & derivados , Pré-Albumina/metabolismo , Alquilação , Biomarcadores/metabolismo , Substâncias para a Guerra Química/intoxicação , Cromatografia Líquida/métodos , Eletroforese/métodos , Humanos , Gás de Mostarda/análise , Gás de Mostarda/intoxicação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Fatores de TempoRESUMO
Intoxication by organophosphorus (OP) poisons, like nerve agents and pesticides, is characterized by the life-threatening inhibition of acetylcholinesterase (AChE) caused by covalent reaction with the serine residue of the active site of the enzyme (phosphylation). Similar reactions occur with butyrylcholinesterase (BChE) and serum albumin present in blood as dissolved proteins. For forensic purposes, products (adducts) with the latter proteins are highly valuable long-lived biomarkers of exposure to OP agents that are accessible by diverse mass spectrometric procedures. In addition, the evidence of poison incorporation might also succeed by the detection of remaining traces of the agent itself, but more likely its hydrolysis and/or enzymatic degradation products. These relatively short-lived molecules are distributed in blood and tissue, and excreted via urine. This review presents the mass spectrometry-based methods targeting the different groups of biomarkers in biological samples, which are already internationally accepted by the Organisation for the Prohibition of Chemical Weapons (OPCW), introduces novel approaches in the field of biomedical verification, and outlines the strict quality criteria that must be fulfilled for unambiguous forensic analysis.