Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(28): 16174-16180, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571947

RESUMO

Urban mining of precious metals from electronic waste, such as printed circuit boards (PCB), is not yet feasible because of the lengthy isolation process, health risks, and environmental impact. Although porous polymers are particularly effective toward the capture of metal contaminants, those with porphyrin linkers have not yet been considered for precious metal recovery, despite their potential. Here, we report a porous porphyrin polymer that captures precious metals quantitatively from PCB leachate even in the presence of 63 elements from the Periodic Table. The nanoporous polymer is synthesized in two steps from widely available monomers without the need for costly catalysts and can be scaled up without loss of activity. Through a reductive capture mechanism, gold is recovered with 10 times the theoretical limit, reaching a record 1.62 g/g. With 99% uptake taking place in the first 30 min, the metal adsorbed to the porous polymer can be desorbed rapidly and reused for repetitive batches. Density functional theory (DFT) calculations indicate that energetically favorable multinuclear-Au binding enhances adsorption as clusters, leading to rapid capture, while Pt capture remains predominantly at single porphyrin sites.

2.
Beilstein J Nanotechnol ; 10: 1844-1850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579082

RESUMO

Rigid network structures of nanoporous organic polymers provide high porosity, which is beneficial for applications such as gas sorption, gas separation, heterogeneous (photo)catalysis, sensing, and (opto)electronics. However, the network structures are practically insoluble. Thus, the processing of nanoporous polymers into nanoparticles or films remains challenging. Herein, we report that nanoporous polymers made via a Knoevenagel-like condensation can be easily processed into nanoparticles (115.7 ± 40.8 nm) or a flawless film by using liquid amines as a solvent at elevated temperatures. FTIR spectra revealed that the carboxyl groups in the nanoporous polymers act as reactive sites for amines, forming new functionalities and spacing the polymeric chains to be dissolved in the liquid amines. The processed film was found to be CO2-philic despite the low surface area, and further able to be transformed into a fine carbon film by thermal treatment.

3.
Chemistry ; 25(45): 10689-10697, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31087579

RESUMO

The mechanism of the bicyclization reaction of a series of terphenyl-bisfluorenols into dispiro[fluorene-9,6'-indeno[1,2-b]fluorene-12',9''-fluorene] and dispiro[fluorene-9,6'-indeno[2,1-a]fluorene-12',9''-fluorene] is reported. Through a combined experimental and theoretical study, the different parameters that drive the regioselectivity of this cyclization reaction have been studied and are presented.

4.
Nat Commun ; 7: 13377, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830697

RESUMO

Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

5.
ACS Appl Mater Interfaces ; 8(32): 20772-85, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27458732

RESUMO

Organic compounds, such as covalent organic framework, metal-organic frameworks, and covalent organic polymers have been under investigation to replace the well-known amine-based solvent sorption technology of CO2 and introduce the most efficient and economical material for CO2 capture and storage. Various organic polymers having different function groups have been under investigation both for low and high pressure CO2 capture. However, search for a promising material to overcome the issues of lower selectivity, less capturing capacity, lower mass transfer coefficient and instability in materials performance at high pressure and various temperatures is still ongoing process. Herein, we report synthesis of six covalent organic polymers (COPs) and their CO2, N2, and CH4 adsorption performances at low and high pressures up to 200 bar. All the presented COPs materials were characterized by using elemental analysis method, Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance (NMR) spectroscopy techniques. Physical properties of the materials such as surface areas, pore volume and pore size were determined through BET analysis at 77 K. All the materials were tested for CO2, CH4, and N2 adsorption using state of the art equipment, magnetic suspension balance (MSB). Results indicated that, amide based material i.e. COP-33 has the largest pore volume of 0.2 cm(2)/g which can capture up to the maximum of 1.44 mmol/g CO2 at room temperature and at pressure of 10 bar. However, at higher pressure of 200 bar and 308 K ester-based compound, that is, COP-35 adsorb as large as 144 mmol/g, which is the largest gas capturing capacity of any COPs material obtained so far. Importantly, single gas measurement based selectivity of COP-33 was comparatively better than all other COPs materials at all condition. Nevertheless, overall performance of COP-35 rate of adsorption and heat of adsorption has indicated that this material can be considered for further exploration as efficient and cheaply available solid sorbent material for CO2 capture and separation.

6.
Beilstein J Org Chem ; 12: 2274-2279, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144294

RESUMO

Effective carbon dioxide (CO2) capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon-carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile-aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g) and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

7.
J Org Chem ; 78(3): 886-98, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23249095

RESUMO

3π-2spiro compounds are constituted of three π-systems linked through two shared spiro carbons leading to a three-dimensional architecture. The modulation of the electronic properties of such molecular systems can be achieved through the modification and/or substitution of their different π-systems and by the modification of their geometry. The present work is focused on the tuning of the electrochemical properties of a wide range of 3π-2spiro compounds based on fluorenyl, xanthenyl, 2,7-disubstituted fluorenyl, 1,2-b- or 2,1-a-indenofluorenyl, and pentaphenylenyl fragments with a main emphasis on the localization of the successive electron transfers. A detailed structure-property relationship study of interest for the organic electronics scientific community is then drawn.

8.
Chemistry ; 17(50): 14031-46, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22083904

RESUMO

Two novel terfluorenyl derivatives, 2,2'',7,7''-tetrakis(9,9-dioctyl-9H-fluoren-2-yl)dispiro[fluorene-9,11'-indeno-(2,1-a)-fluorene-12',9''-fluorene] ((2,1-a)-DST-IF) and 2,2'',7,7''-tetrakis(9,9-dioctyl-9H-fluoren-2-yl)dispiro- [fluorene-9,6'-indeno-(1,2-b)-fluorene-12',9''-fluorene] ((1,2-b)-DST-IF) have been synthesized by two different synthetic approaches. These terfluorenyl derivatives possess a different central indenofluorene core, namely (2,1-a)-indenofluorene or (1,2-b)-indenofluorene, which imposes two distinct geometry profiles, and different structural environments for the terfluorenyl fluorophores that translates into drastically different optical and electrochemical properties for (2,1-a)-DST-IF and (1,2-b)-DST-IF. These properties have been carefully studied through a combined experimental and theoretical approach. The (2,1-a)-DST-IF isomer has been successfully used as emitting layer in a blue single-layer small-molecule organic light-emitting diode (SMOLED) and appears as the first example of a blue emission arising from intramolecular terfluorenyl excimers. Regarding the importance of terfluorenyl derivatives in organic electronics, the present structure-properties relationship study, may open new avenues in the design of efficient blue fluorophores.

9.
Chem Commun (Camb) ; 47(42): 11703-5, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21952416

RESUMO

A unique (2,1-b)-indenofluorenyl core flanked with two spirofluorene units, possessing a high triplet energy value and excellent thermal/morphological stability, is reported.

10.
Chemistry ; 17(37): 10272-87, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21826751

RESUMO

Two series of DiSpiroFluorene-IndenoFluorene (DSF-IF) positional isomers, namely dispiro[2,7-diarylfluorene-9',6,9'',12-indeno[1,2-b]fluorenes], (1,2-b)-DSF-IFs 1 and dispiro[2,7-diarylfluorene-9',6,9'',12-indeno[2,1-a]fluorenes], (2,1-a)-DSF-IFs 2 have been synthesized. These violet-to-blue fluorescent emitters possess a 3π-2spiro architecture, which combines via two spiro links two different indenofluorene cores, that is, (1,2-b)-IF or (2,1-a)-IF and 2,7-substituted-diaryl-fluorene units. Due to their different geometric profiles, the two families of positional isomers present drastically different properties. The marked difference observed between the properties of (1,2-b)-DSF-IF (1) and (2,1-a)-DSF-IF (2) is discussed in terms of intramolecular π-π interactions occurring in (2,1-a)-DSF-IF (2) leading to conformationally-controllable intramolecular excimer formation. Indeed, the original geometry of the (2,1-a)-DSF-IF (2) family, with face-to-face "aryl-fluorene-aryl" moieties, leads to remarkable excimer emission through intramolecular π-π interactions in the excited state. Furthermore, the emission wavelengths can be gradually modulated by the control of the steric hindrance between the adjacent substituted phenyl rings. Thus, through a comparative and detailed study of the (1)H NMR, electrochemical and photophysical properties of DSF-IFs 1 and 2, we have evidenced the intramolecular π-π interactions occurring between the two "aryl-fluorene-aryl" moieties in the ground state and in the excited state. These properties have been finally correlated to the spectacular conformational change modeled by density functional theory (DFT) calculations. Indeed, the two "aryl-fluorene-aryl" moieties switch from a staggered conformation in the ground state to an eclipsed conformation in the first excited state.

11.
Org Lett ; 13(16): 4418-21, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21790139

RESUMO

Through a rational design, a novel Donor-Acceptor π-conjugated (D-π-A) blue fluorescent indenofluorene dye, DA-DSF-IF, has been synthesized for application in single-layer Small Molecule Organic Light Emitting Diodes (SMOLEDs). This new blue emitter possesses bipolar properties as well as good morphological and emission color stabilities and has been successfully used in a blue emitting single-layer SMOLED, with performances impressively magnified compared to a nonbipolar indenofluorene emitter.

12.
Chemistry ; 16(46): 13646-58, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21053210

RESUMO

Two novel fluorophores based on the (2,1-a)-indenofluorenyl backbone, dispiro[fluorene-9,11'-indeno[2,1-a]fluorene-12',9''-fluorene], (2,1-a)-DSF-IF and 11,12-dihydroindeno[2,1-a]fluorene (2,1-a)-IF have been prepared through original and efficient synthetic approaches. After consideration of synthetic features, the structural, optical and electrochemical properties of these new blue/violet emitters have been studied in detail by a combined experimental and theoretical approach. The properties of the (2,1-a)-DSF-IF and (2,1-a)-IF are also compared to those of their corresponding positional isomers based on the (1,2-b)-indenofluorenyl backbone and those of related dispirofluorene heteroacenes.

14.
Org Lett ; 11(21): 4794-7, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19795887

RESUMO

Two families of positional isomers of dispirofluorene-indenofluorene substituted by phenyl groups at the 2,7-positions of the fluorene moieties present drastically different optical properties. The emission wavelengths may be gradually and conveniently modulated for one of the two isomers by the phenyl group's substituent whose bulkiness controls the extent of the excimeric interaction evidenced in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...