Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(29): eado2957, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018407

RESUMO

Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, ß-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.


Assuntos
Acetobacterium , Fluoretos , Fluoretos/metabolismo , Fluoretos/química , Acetobacterium/metabolismo , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/química , Elétrons , Biodegradação Ambiental , Halogenação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Fluorocarbonos/metabolismo , Fluorocarbonos/química
2.
mBio ; 15(1): e0278523, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063407

RESUMO

IMPORTANCE: Society uses thousands of organofluorine compounds, sometimes denoted per- and polyfluoroalkyl substances (PFAS), in hundreds of products, but recent studies have shown some to manifest human and environmental health effects. As a class, they are recalcitrant to biodegradation, partly due to the paucity of fluorinated natural products to which microbes have been exposed. Another limit to PFAS biodegradation is the intracellular toxicity of fluoride anion generated from C-F bond cleavage. The present study identified a broader substrate specificity in an enzyme originally studied for its activity on the natural product fluoroacetate. A recombinant Pseudomonas expressing this enzyme was used here as a model system to better understand the limits and effects of a high level of intracellular fluoride generation. A fluoride stress response has evolved in bacteria and has been described in Pseudomonas spp. The present study is highly relevant to organofluorine compound degradation or engineered biosynthesis in which fluoride anion is a substrate.


Assuntos
Fluoretos , Fluorocarbonos , Humanos , Pseudomonas/genética , Pseudomonas/metabolismo , Fluoracetatos/metabolismo , Biodegradação Ambiental
3.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168399

RESUMO

Enzymatic cleavage of C-F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, ß-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. Two critical molecular features in Acetobacterium species enabling reductive defluorination are (i) a functional fluoride efflux transporter (CrcB) and (ii) an electron-bifurcating caffeate reduction pathway (CarABCDE). The fluoride transporter was required for detoxification of released fluoride. Car enzymes were implicated in defluorination by the following evidence: (i) only Acetobacterium spp. with car genes catalyzed defluorination; (ii) caffeate and PFAS competed in vivo ; (iii) models from the X-ray structure of the electron-bifurcating reductase (CarC) positioned the PFAS substrate optimally for reductive defluorination; (iv) products identified by 19 F-NMR and high-resolution mass spectrometry were consistent with the model. Defluorination biomarkers identified here were found in wastewater treatment plant metagenomes on six continents.

4.
J Nutr ; 152(5): 1187-1199, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35348723

RESUMO

The human gut microbiome is linked to metabolic and cardiovascular disease risk. Dietary modulation of the human gut microbiome offers an attractive pathway to manipulate the microbiome to prevent microbiome-related disease. However, this promise has not been realized. The complex system of diet and microbiome interactions is poorly understood. Integrating observational human diet and microbiome data can help researchers and clinicians untangle the complex systems of interactions that predict how the microbiome will change in response to foods. The use of dietary patterns to assess diet-microbiome relations holds promise to identify interesting associations and result in findings that can directly translate into actionable dietary intake recommendations and eating plans. In this article, we first highlight the complexity inherent in both dietary and microbiome data and introduce the approaches generally used to explore diet and microbiome simultaneously in observational studies. Second, we review the food group and dietary pattern-microbiome literature focusing on dietary complexity-moving beyond nutrients. Our review identified a substantial and growing body of literature that explores links between the microbiome and dietary patterns. However, there was very little standardization of dietary collection and assessment methods across studies. The 54 studies identified in this review used ≥7 different methods to assess diet. Coupled with the variation in final dietary parameters calculated from dietary data (e.g., dietary indices, dietary patterns, food groups, etc.), few studies with shared methods and assessment techniques were available for comparison. Third, we highlight the similarities between dietary and microbiome data structures and present the possibility that multivariate and compositional methods, developed initially for microbiome data, could have utility when applied to dietary data. Finally, we summarize the current state of the art for diet-microbiome data integration and highlight ways dietary data could be paired with microbiome data in future studies to improve the detection of diet-microbiome signals.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dieta , Ingestão de Alimentos , Alimentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...