Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Orthop Surg ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119637

RESUMO

BACKGROUND: Tourniquet is applied in Total Knee Arthroplasty (TKA) to reduce intraoperative blood loss and improve view of surgical field. However, tourniquet use in TKA is still in dispute. Some researchers find that tourniquet may lead to extra side effects such as aggravated pain and limb swelling, while others consider that tourniquet has no significant adverse impact on clinical outcomes of TKA patients. This trial is conducted to evaluate tourniquet effect on TKA patients. METHODS: A prospective, single-blind, randomized controlled trail is adopted with a sample size of 130 knees from August 2020 to February 2023. Patients undergoing TKA are randomly allocated to tourniquet group and non-tourniquet group. Outcomes including quadriceps thickness and stiffness, operation time, total blood loss, intraoperative blood loss, postoperative blood loss, transfusion rate, thigh circumference, knee and thigh VAS, D-Dimer and CRP level, knee function score, patient satisfaction, and complications are evaluated in this trial. Student's t-test, Mann-Whitney U test, Pearson's chi-square test, and Fisher's exact test are used in this study. RESULTS: No significant difference in demographic information and baseline outcomes were found (p > 0.05). Participants in the tourniquet group had significantly less total blood loss and intraoperative blood loss, more postoperative blood loss, and higher D-Dimer level on postoperative day 3 when compared with non-tourniquet group (p < 0.05). Other outcomes including quadriceps thickness and stiffness, operation time, postoperative blood loss, transfusion rate, thigh circumference, knee and thigh VAS, D-Dimer level on postoperative day 1, CRP level, knee function score, patient satisfaction, and complications showed no significant difference (p > 0.05). CONCLUSION: Tourniquet application can effectively reduce intraoperative blood loss and total blood loss, without significant side effects. Hence, we advocate the regular use of tourniquet in primary TKA.

2.
Food Chem Toxicol ; 192: 114939, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151878

RESUMO

As a replacement for bisphenol A (BPA), bisphenol AF (BPAF) showed stronger maternal transfer and higher fetal accumulation than BPA. Therefore, concerns should be raised about the health risks of maternal exposure to BPAF during gestation on the offspring. In this study, SD rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to investigate the bioaccumulation and adverse effects in liver, spleen, and kidney tissues of the offspring at weaning period. Bioaccumulation of BPAF in these tissues with concentrations ranging from 1.56 ng/mg (in spleen of males) to 55.44 ng/mg (in liver of females) led to adverse effects at different biological levels, including increased relative weights of spleen and kidneys, histopathological damage in liver, spleen, and kidney, organ functional damage in liver, spleen, and kidney, upregulated expression of genes related to lipid metabolism (in liver), oxidative stress response (in kidney), immunity and inflammatory (in spleen). Furthermore, dysregulated metabolomics was identified in spleen, with 217 differential metabolites screened and 9 KEGG pathways significantly enriched. This study provides a comprehensive insight into the systemic toxicities of prenatal exposure to BPAF in SD rats. Given the broad applications and widespread occurrence of BPAF, its safety should be re-considered.

3.
Environ Pollut ; : 124764, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154884

RESUMO

Cigarette smoke (CS) is an important indoor air pollutant associated with an increased risk of ocular surface disease. As the eye's outermost layer, the cornea is highly sensitive to air pollutants like CS. However, the specific mechanisms linking CS exposure to corneal dysfunction have not been fully elucidated. In the present study, we found that CS exposure damages corneal epithelial cells, accompanied by increased iron (Fe2+) levels and lipid peroxidation, both hallmarks of ferroptosis. Ferroptosis inhibitors, including Ferrostatin-1 (Fer-1) and Deferoxamine mesylate (DFO), protect against CS-induced cell damage. To understand the underlying mechanisms, we investigated how CS affects iron and lipid metabolism. Our results showed that CS could upregulate intracellular iron levels by increasing TFRC expression and promote lipid peroxidation by increasing ACSL4 expression. Silencing ACSL4 or TFRC expression prevented CS-induced ferroptosis. Furthermore, we found that the upregulation of TFRC and ACSL4 was driven by increased YAP transcription. Pharmacological or genetic inhibition of YAP effectively prevented corneal epithelial cell ferroptosis under CS stimulation. Additionally, our results suggest that CS exposure could increase O-GlcNAc transferase activity, leading to YAP O-GlcNAcylation. This glycosylation of YAP interfered with its K48-linked ubiquitination, resulting in YAP stabilization. Collectively, we found that CS exposure induces corneal epithelial cell ferroptosis via the YAP O-GlcNAcylation, and provide evidence that CS exposure is a strong risk factor for ocular surface disease.

4.
Orthop Surg ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135273

RESUMO

OBJECTIVE: A robotic system was recently introduced to improve prosthetic alignment during total knee arthroplasty (TKA). The purpose of this multicenter, prospective, randomized controlled trial (RCT) was to determine whether robotic-arm-assisted TKA improves clinical and radiological outcomes when compared to conventional TKA. METHODS: One hundred and thirty patients who underwent primary TKA were enrolled in this prospective, randomized controlled trial, which was conducted at three hospitals. Five patients were lost to follow-up 6 weeks after surgery. Therefore, 125 participants (63 in the intervention group and 62 in the control group) remained in the final analysis. The primary outcome was the rate at which the mechanical axis of the femur deviated by less than 3° from the mechanical axis of the tibia. This was evaluated by full-length weight-bearing X-rays of the lower limb 6 weeks postoperatively. Secondary outcomes included operation times, 6-week postoperative functional outcomes evaluated by the American Knee Society score (KSS) and the Western Ontario and McMaster Universities osteoarthritis index (WOMAC), short form-36 (SF-36) health survey results, and the occurrence of adverse events (AEs) and serious adverse events (SAEs). RESULTS: At 6 weeks postoperatively, we found that the rate of radiographic inliers was significantly higher in the intervention group (78.7% vs 51.6%; p = 0.00; 95% confidence interval, 10.9% to 43.2%). The operation was significantly longer in the intervention group than in the control group (119.5 vs 85.0 min; p = 0.00). There were no significant differences in the 6-week postoperative functional outcomes, SF-36, AEs, and SAEs between the two groups. There were no AEs or SAEs that were determined to be "positively related" to the robotic system. CONCLUSION: Robotic-arm-assisted TKA is safe and effective, as demonstrated in this trial.

5.
Front Immunol ; 15: 1429523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100675

RESUMO

Venous thromboembolism (VTE) poses a notable risk of morbidity and mortality. The natural resolution of the venous thrombus might be a potential alternative treatment strategy for VTE. Monocytes/macrophages merge as pivotal cell types in the gradual resolution of the thrombus. In this review, the vital role of macrophages in inducing inflammatory response, augmenting neovascularization, and facilitating the degradation of fibrin and collagen during thrombus resolution was described. The two phenotypes of macrophages involved in thrombus resolution and their dual functions were discussed. Macrophages expressing various factors, including cytokines and their receptors, adhesion molecules, chemokine receptors, vascular endothelial growth factor receptors, profibrinolytic- or antifibrinolytic-related enzymes, and other elements, are explored for their potential to promote or attenuate thrombus resolution. Furthermore, this review provides a comprehensive summary of new and promising therapeutic candidate drugs associated with monocytes/macrophages that have been demonstrated to promote or impair thrombus resolution. However, further clinical trials are essential to validate their efficacy in VTE therapy.


Assuntos
Macrófagos , Monócitos , Trombose Venosa , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Trombose Venosa/imunologia , Trombose Venosa/metabolismo , Tromboembolia Venosa/imunologia , Tromboembolia Venosa/patologia , Tromboembolia Venosa/tratamento farmacológico
6.
Int J Biol Macromol ; : 133245, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977045

RESUMO

Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.

7.
Front Cell Infect Microbiol ; 14: 1397724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966251

RESUMO

Cryptococcus neoformans is at the top of the list of "most wanted" human pathogens. Only three classes of antifungal drugs are available for the treatment of cryptococcosis. Studies on antifungal resistance mechanisms are limited to the investigation of how a particular antifungal drug induces resistance to a particular drug, and the impact of stresses other than antifungals on the development of antifungal resistance and even cross-resistance is largely unexplored. The endoplasmic reticulum (ER) is a ubiquitous subcellular organelle of eukaryotic cells. Brefeldin A (BFA) is a widely used chemical inducer of ER stress. Here, we found that both weak and strong selection by BFA caused aneuploidy formation in C. neoformans, mainly disomy of chromosome 1, chromosome 3, and chromosome 7. Disomy of chromosome 1 conferred cross-resistance to two classes of antifungal drugs: fluconazole and 5-flucytosine, as well as hypersensitivity to amphotericin B. However, drug resistance was unstable, due to the intrinsic instability of aneuploidy. We found overexpression of AFR1 on Chr1 and GEA2 on Chr3 phenocopied BFA resistance conferred by chromosome disomy. Overexpression of AFR1 also caused resistance to fluconazole and hypersensitivity to amphotericin B. Furthermore, a strain with a deletion of AFR1 failed to form chromosome 1 disomy upon BFA treatment. Transcriptome analysis indicated that chromosome 1 disomy simultaneously upregulated AFR1, ERG11, and other efflux and ERG genes. Thus, we posit that BFA has the potential to drive the rapid development of drug resistance and even cross-resistance in C. neoformans, with genome plasticity as the accomplice.


Assuntos
Aneuploidia , Antifúngicos , Brefeldina A , Cryptococcus neoformans , Farmacorresistência Fúngica , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Brefeldina A/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Anfotericina B/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Flucitosina/farmacologia , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
8.
Cardiovasc Toxicol ; 24(9): 904-917, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39008239

RESUMO

Hypertension is a globally prevalent disease, but the pathogenesis remains largely unclear. AMP-activated protein kinase (AMPK) is a nutrition-sensitive signal of cellular energy metabolism, which has a certain influence on the development of hypertension. Previously, we found a down-regulation of the phosphorylated (p-) form of AMPK, and the up-regulation of the angiotensin II type 1 receptor (AT1-R) and that of p-ERK1/2 in the hypothalamic paraventricular nucleus (PVN) of hypertensive rats. However, the exact mechanism underlying the relationship between AMPK and AT1-R in the PVN during hypertension remains unclear. Thus, we hypothesized that AMPK modulates AT1-R through the ERK1/2-NF-κB pathway in the PVN, thereby inhibiting sympathetic nerve activity and improving hypertension. To examine this hypothesis, we employed a renovascular hypertensive animal model developed via two-kidney, one-clip (2K1C) and sham-operated (SHAM). Artificial cerebrospinal fluid (aCSF), used as vehicle, or 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, an AMPK activator, 60 µg/day) was microinjected bilaterally in the PVN of these rats for 4 weeks. In 2K1C rats, there an increase in systolic blood pressure (SBP) and circulating norepinephrine (NE). Also, the hypertensive rats had lowered expression of p-AMPK and p-AMPK/AMPK, elevated expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R, increased NF-κB p65 activity in the PVN compared with the levels of these biomarkers in SHAM rats. Four weeks of bilateral PVN injection of AMPK activator AICAR, attenuated the NE level and SBP, increased the expression of p-AMPK and p-AMPK/AMPK, lessened the NF-κB p65 activity, decreased the expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R in the PVN of 2K1C rats. Data from this study imply that the activation of AMPK within the PVN suppressed AT1-R expression through inhibiting the ERK1/2-NF-κB pathway, decreased the activity of the sympathetic nervous system, improved hypertension.


Assuntos
Proteínas Quinases Ativadas por AMP , Modelos Animais de Doenças , Ativação Enzimática , Hipertensão Renovascular , Proteína Quinase 3 Ativada por Mitógeno , Núcleo Hipotalâmico Paraventricular , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Hipertensão Renovascular/enzimologia , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/tratamento farmacológico , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Receptor Tipo 1 de Angiotensina/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição RelA/metabolismo , Ribonucleotídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Anti-Hipertensivos/farmacologia , Ratos
9.
Mol Inform ; : e202300336, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031899

RESUMO

Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost-effective in silico prediction of KIs drug repositioning via analyzing cross-docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross-docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT-PI3K-mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 µM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 µM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.

10.
Commun Biol ; 7(1): 844, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987655

RESUMO

Estrogen excess in females has been linked to a diverse array of chronic and acute diseases. Emerging research shows that exposure to estrogen-like compounds such as bisphenol S leads to increases in 17ß-estradiol levels, but the mechanism of action is unclear. The aim of this study was to reveal the underlying signaling pathway-mediated mechanisms, target site and target molecule of action of bisphenol S causing excessive estrogen synthesis. Human ovarian granulosa cells SVOG were exposed to bisphenol S at environmentally relevant concentrations (1 µg/L, 10 µg/L, and 100 µg/L) for 48 h. The results confirms that bisphenol S accumulates mainly on the cell membrane, binds to follicle stimulating hormone receptor (FSHR) located on the cell membrane, and subsequently activates the downstream cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling pathway, leading to enhanced conversion of testosterone to 17ß-estradiol. This study deepens our knowledge of the mechanisms of environmental factors in pathogenesis of hyperestrogenism.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Estrogênios , Fenóis , Receptores do FSH , Transdução de Sinais , Sulfonas , Fenóis/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , AMP Cíclico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Estrogênios/metabolismo , Receptores do FSH/metabolismo , Receptores do FSH/genética , Sulfonas/farmacologia , Estradiol/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos
11.
Cancer Cell Int ; 24(1): 252, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030557

RESUMO

Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames (ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, translational regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the regulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small peptides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute to a deeper understanding of cancer and the development of new targeted anticancer therapies.

12.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38903067

RESUMO

The neurovascular unit (NVU), comprising vascular, glial and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer - the superficial vascular plexus (SVP) - is ensheathed by astrocytes, like brain capillaries, whereas glial ensheathment in other layers derives from radial Müller glia. Using serial electron microscopy reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the tiled astrocytic endfeet wrapping brain capillaries. However, gaps in the Müller sheath, found mainly in the intermediate vascular plexus (IVP), permit different neuron types to contact pericytes and the endothelial cells directly. Pericyte somata are a favored target, often at spine-like structures with a reduced or absent vascular basement lamina. Focal application of adenosine triphosphate (ATP) to the vitreal surface evoked Ca2+ signals in Müller sheaths in all three vascular layers. Pharmacological experiments confirmed that Müller sheaths express purinergic receptors that, when activated, trigger intracellular Ca2+ signals that are amplified by IP3-controlled intracellular Ca2+ stores. When rod photoreceptors die in a mouse model of retinitis pigmentosa (rd10), Müller sheaths dissociate from the deep vascular plexus (DVP) but are largely unchanged within the IVP or SVP. Thus, Müller glia interact with retinal vessels in a laminar, compartmentalized manner: glial sheathes are virtually complete in the SVP but fenestrated in the IVP, permitting direct neural-to-vascular contacts. In the DVP, the glial sheath is only modestly fenestrated and is vulnerable to photoreceptor degeneration.

13.
Plant Physiol Biochem ; 213: 108826, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908351

RESUMO

Rice production is threatened by heavy metal stress. The use of multi-walled carbon nanotubes (MWCNTs) in agriculture has been reported in previous studies. We aimed to quantify the impact of MWCNTs on the growth and physiological characteristics of scented rice under cadmium (Cd) and lead (Pb) stresses. Therefore, a pot experiment was conducted, two scented rice varieties Yuxiangyouzhan and Xiangyaxiangzhan were used as materials grown under different concentrations of MWCNTs (0, 100, and 300 mg kg-1 recorded as CK, CNPs100, and CNPs300, respectively). The yield, antioxidant response, and rhizosphere microbial community of scented rice were studied. The results showed that compared with the CK treatment, the CNPs100 and CNPs300 treatments increased leaf dry weight by 17.95%-56.22% at the heading stage, and the H2O2 content in leaves decreased significantly by 36.64%-42.27% at the maturity stage. Under CNPs100 treatment, the grain yield of two scented rice varieties increased significantly by 17.54% and 27.40%, respectively. The MWCNTs regulated the distribution of the Cd and Pb in different plant tissues. The content of Cd (0.11-0.20 mg kg-1) and Pb (0.01-0.04 mg kg-1) in grain were at a safety level (<0.2 mg kg-1). Moreover, MWCNTs increased soil microbial community abundance and altered community composition structure under Cd-Pb stress, which in turn improved agronomic traits and quality of scented rice. Overall, this study suggested that the application of MWCNTs regulates the growth, yield, physiological response, and soil microbial community, the genotypes response effect of scented rice to MWCNTs is needed further studied.


Assuntos
Antioxidantes , Cádmio , Chumbo , Nanotubos de Carbono , Oryza , Rizosfera , Oryza/microbiologia , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Antioxidantes/metabolismo , Microbiota/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Microbiologia do Solo , Estresse Fisiológico/efeitos dos fármacos
14.
Org Lett ; 26(27): 5695-5699, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38912656

RESUMO

One rare stephacidin-asperochratide hybrid, stephaochratidin A (1), was isolated from the deep-sea-derived Aspergillus ochraceus MCCC 3A00521. The relative structure of 1 was determined by comprehensive analyses of its 1D and 2D NMR data as well as HRESIMS data. And the absolute configuration was unambiguously assigned by ECD calculations and the X-ray single-crystal diffraction analysis. Plausible biosynthetic pathway of 1 was proposed. Stephaochratidin A (1) exhibited significant ferroptosis inhibitory activity with the EC50 value of 15.4 µM by downregulating HMOX-1 expression and lipid peroxidation.


Assuntos
Aspergillus ochraceus , Ferroptose , Ferroptose/efeitos dos fármacos , Estrutura Molecular , Aspergillus ochraceus/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos
15.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

16.
Front Public Health ; 12: 1364048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873290

RESUMO

Background: It is important to figure out the immunity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) reinfection to understand the response of humans to viruses. A serological survey for previously infected populations in Jiangsu Province was conducted to compare the antibody level of SARS-CoV-2 in reinfection by Omicron or not. Methods: Reinfection with SARS-CoV-2 was defined as an individual being infected again after 90 days of the initial infection. Telephone surveys and face-to-face interviews were implemented to collect information. Experimental and control serum samples were collected from age-sex-matched reinfected and non-reinfected cases, respectively. IgG anti-S and neutralizing antibodies (Nab) concentrations were detected by the Magnetism Particulate Immunochemistry Luminescence Method (MCLIA). Antibody titers were log(2)-transformed and analyzed by a two-tailed Mann-Whitney U test. Subgroup analysis was conducted to explore the relationship between the strain type of primary infection, SARS-Cov-2 vaccination status, and antibody levels. Multivariate linear regression models were used to identify associations between reinfection with IgG and Nab levels. Results: Six hundred thirty-one individuals were enrolled in this study, including 327 reinfected cases and 304 non-reinfected cases. The reinfection group had higher IgG (5.65 AU/mL vs. 5.22 AU/mL) and Nab (8.02 AU/mL vs. 7.25 AU/mL) levels compared to the non-reinfection group (p < 0.001). Particularly, individuals who had received SARS-CoV-2 vaccination or were initially infected with the Wild type and Delta variant showed a significant increase in antibody levels after reinfection. After adjusting demographic variables, vaccination status and the type of primary infection together, IgG and Nab levels in the reinfected group increased by log(2)-transformed 0.71 and 0.64 units, respectively (p < 0.001). This revealed that reinfection is an important factor that affects IgG and Nab levels in the population. Conclusion: Reinfection with Omicron in individuals previously infected with SARS-CoV-2 enhances IgG and Nab immune responses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Imunoglobulina G , Reinfecção , SARS-CoV-2 , Humanos , COVID-19/imunologia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Reinfecção/imunologia , Reinfecção/virologia , China , Anticorpos Neutralizantes/sangue , Masculino , Feminino , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , Adulto , Idoso
17.
Biochem Pharmacol ; 226: 116338, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848780

RESUMO

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.


Assuntos
Mitocôndrias Cardíacas , Infarto do Miocárdio , Miócitos Cardíacos , Animais , Masculino , Camundongos , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
18.
Chin J Integr Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753274

RESUMO

OBJECTIVE: To study the effect of Shexiang Tongxin Dropping Pill (STDP) on angiogenesis in diabetic cardiomyopathy mice with coronary microcirculation dysfunction (CMD). METHODS: According to a random number table, 6 of 36 SPF male C57BL/6 mice were randomly selected as the control group, and the remaining 30 mice were injected with streptozotocin intraperitoneally to replicate the type 1 diabetes model. Mice successfully copied the diabetes model were randomly divided into the model group, STDP low-dose group [15 mg/(kg·d)], medium-dose group [30 mg/(kg·d)], high-dose group [60 mg/(kg·d)], and nicorandil group [15 mg/(kg·d)], 6 in each group. The drug was given by continuous gavage for 12 weeks. The cardiac function of mice in each group was detected at the end of the experiment, and coronary flow reserve (CFR) was detected by chest Doppler technique. Pathological changes of myocardium were observed by hematoxylin-eosin staining, collagen fiber deposition was detected by masson staining, the number of myocardial capillaries was detected by platelet endothelial cell adhesion molecule-1 staining, and the degree of myocardial hypertrophy was detected by wheat germ agglutinin staining. The expression of the vascular endothlial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) signaling pathway-related proteins in myocardial tissue was detected by Western blot. RESULTS: Compared with the model group, medium- and high-dose STDP significantly increased the left ventricular ejection fraction and left ventricular fraction shortening (P<0.01), obviously repaired the disordered cardiac muscle structure, reduced myocardial fibrosis, reduced myocardial cell area, increased capillary density, and increased CFR level (all P<0.01). Western blot showed that high-dose STDP could significantly increase the expression of VEGF and promote the phosphorylation of vascular endothelial growth factor receptor 2, phosphoinositide 3-kinase, protein kinase B, and eNOS (P<0.05 or P<0.01). CONCLUSION: STDP has a definite therapeutic effect on diabetic CMD, and its mechanism may be related to promoting angiogenesis through the VEGF/eNOS signaling pathway.

19.
Nanoscale Horiz ; 9(7): 1190-1199, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38757185

RESUMO

Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.


Assuntos
Antibacterianos , Glucose Oxidase , Fotoquimioterapia , Pontos Quânticos , Pontos Quânticos/química , Pontos Quânticos/efeitos da radiação , Glucose Oxidase/química , Fotoquimioterapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Cobalto/química , Cobalto/farmacologia , Luz , Carbono/química , Carbono/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Reatores Biológicos , Espécies Reativas de Oxigênio/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1905-1914, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812203

RESUMO

This study aimed to explore the mechanism of Shexiang Tongxin Dropping Pills(STDP) in treating diabetic cardiomyopathy(DCM) based on network pharmacology, molecular docking, and animal experiments. BATMAN, TCMSP, and GeneCards were searched for the active ingredients and targets of STDP against DCM. STRING and Cytoscape were used to build the protein-protein interaction(PPI) network and "drug-active ingredient-target" network. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis of the targets were carried out based on DAVID. The molecular docking of key receptor proteins with corresponding active ingredients was performed using AutoDock Vina. The rat model of DCM was established by a high-fat diet combined with intraperitoneal injection of streptozotocin. Rats were assigned into control, model, low-(20 mg·kg~(-1)) and high-dose(40 mg·kg~(-1)) STDP, and metformin(200 mg·kg~(-1)) groups. After 8 weeks of continuous administration, the cardiac function, myocardial pathological changes, and myocardial collagen fiber deposition of rats in each group were detected by echocardiography, hematoxylin-eosin(HE) staining, and Sirius red staining, respectively. The myocardial hypertrophy was detected by WGA staining. The expression levels of p38 mitogen-activated protein kinase(p38), phosphorylation-p38(p-p38), c-Jun N-terminal kinase(JNK), phosphorylation-JNK(p-JNK), caspase-3, and C-caspase-3 in the myocardial tissue of rats in each group were measured by Western blot. The network pharmacology predicted 199 active ingredients and 1 655 targets of STDP and 463 targets of DCM. One hundred and thirty-four potential targets of STDP for treating DCM were obtained, and the AGE-RAGE signaling pathway in diabetic complications was screened out. Molecular docking results showed that miltirone, dehydromiltirone, and tryptanthrin had strong binding affinity with RAGE. The results of animal experiments confirmed that STDP effectively protected the cardiac function of DCM rats. Compared with the DCM model group, the STDP groups showed significantly down-regulated protein levels of p-p38, p-JNK, and C-caspase-3. To sum up, STDP may protect the cardiac function of DCM rats by regulating the AGE-RAGE signaling pathway.


Assuntos
Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , Masculino , Ratos Sprague-Dawley , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...