Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.076
Filtrar
1.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124994

RESUMO

The suitability of a given protein for use in food products depends heavily on characteristics such as foaming capacity, emulsifiability, and solubility, all of which are affected by the protein structure. Notably, protein structure, and thus characteristics related to food applications, can be altered by treatment with high-power ultrasound (HUS). Almonds are a promising source of high-quality vegetable protein for food products, but their physicochemical and functional properties remain largely unexplored, limiting their current applications in foods. Here, we tested the use of HUS on almond protein isolate (API) to determine the effects of this treatment on API functional properties. Aqueous almond protein suspensions were sonicated at varying power levels (200, 400, or 600 W) for two durations (15 or 30 min). The molecular structure, protein microstructure, solubility, and emulsifying and foaming properties of the resulting samples were then measured. The results showed that HUS treatment did not break API covalent bonds, but there were notable changes in the secondary protein structure composition, with the treated proteins showing a decrease in α-helices and ß-turns, and an increase in random coil structures as the result of protein unfolding. HUS treatment also increased the number of surface free sulfhydryl groups and decreased the intrinsic fluorescence intensity, indicating that the treatment also led to alterations in the tertiary protein structures. The particle size in aqueous suspensions was decreased in treated samples, indicating that HUS caused the dissociation of API aggregates. Finally, treated samples showed increased water solubility, emulsifying activity, emulsifying stability, foaming capacity, and foaming stability. This study demonstrated that HUS altered key physicochemical characteristics of API, improving critical functional properties including solubility and foaming and emulsifying capacities. This study also validated HUS as a safe and environmentally responsible tool for enhancing desirable functional characteristics of almond proteins, promoting their use in the food industry as a high-quality plant-based protein.


Assuntos
Proteínas de Plantas , Prunus dulcis , Solubilidade , Prunus dulcis/química , Proteínas de Plantas/química , Ondas Ultrassônicas , Estrutura Secundária de Proteína
2.
Future Med Chem ; : 1-17, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145469

RESUMO

Aim: Build a virtual screening model for ULK1 inhibitors based on artificial intelligence. Materials & methods: Build machine learning and deep learning classification models and combine molecular docking and biological evaluation to screen ULK1 inhibitors from 13 million compounds. And molecular dynamics was used to explore the binding mechanism of active compounds. Results & conclusion: Possibly due to less available training data, machine learning models significantly outperform deep learning models. Among them, the Naive Bayes model has the best performance. Through virtual screening, we obtained three inhibitors with IC50 of µM level and they all bind well to ULK1. This study provides an efficient virtual screening model and three promising compounds for the study of ULK1 inhibitors.


[Box: see text].

3.
Infect Dis Poverty ; 13(1): 59, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152514

RESUMO

BACKGROUND: The co-infection of human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) and tuberculosis (TB) poses a significant clinical challenge and is a major global public health issue. This study aims to elucidate the disease burden of HIV-TB co-infection in global, regions and countries, providing critical information for policy decisions to curb the HIV-TB epidemic. METHODS: The ecological time-series study used data from the Global Burden of Disease (GBD) Study 2021. The data encompass the numbers of incidence, prevalence, mortality, and disability-adjusted life year (DALY), as well as age-standardized incidence rate (ASIR), prevalence rate (ASPR), mortality rate (ASMR), and DALY rate for HIV-infected drug-susceptible tuberculosis (HIV-DS-TB), HIV-infected multidrug-resistant tuberculosis (HIV-MDR-TB), and HIV-infected extensively drug-resistant tuberculosis (HIV-XDR-TB) from 1990 to 2021. from 1990 to 2021. The estimated annual percentage change (EAPC) of rates, with 95% confidence intervals (CIs), was calculated. RESULTS: In 2021, the global ASIR for HIV-DS-TB was 11.59 per 100,000 population (95% UI: 0.37-13.05 per 100,000 population), 0.55 per 100,000 population (95% UI: 0.38-0.81 per 100,000 population), for HIV-MDR-TB, and 0.02 per 100,000 population (95% UI: 0.01-0.03 per 100,000 population) for HIV-XDR-TB. The EAPC for the ASIR of HIV-MDR-TB and HIV-XDR-TB from 1990 to 2021 were 4.71 (95% CI: 1.92-7.59) and 13.63 (95% CI: 9.44-18.01), respectively. The global ASMR for HIV-DS-TB was 2.22 per 100,000 population (95% UI: 1.73-2.74 per 100,000 population), 0.21 per 100,000 population (95% UI: 0.09-0.39 per 100,000 population) for HIV-MDR-TB, and 0.01 per 100,000 population (95% UI: 0.00-0.03 per 100,000 population) for HIV-XDR-TB in 2021. The EAPC for the ASMR of HIV-MDR-TB and HIV-XDR-TB from 1990 to 2021 were 4.78 (95% CI: 1.32-8.32) and 10.00 (95% CI: 6.09-14.05), respectively. CONCLUSIONS: The findings indicate that enhancing diagnostic and treatment strategies, strengthening healthcare infrastructure, increasing access to quality medical care, and improving public health education are essential to combat HIV-TB co-infection.


Assuntos
Coinfecção , Carga Global da Doença , Infecções por HIV , Tuberculose , Humanos , Coinfecção/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/complicações , Tuberculose/epidemiologia , Carga Global da Doença/tendências , Incidência , Prevalência , Saúde Global/estatística & dados numéricos , Feminino , Masculino , Adulto , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
4.
Plant J ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152711

RESUMO

Seed colors and color patterns are critical for the survival of wild plants and the consumer appeal of crops. In common bean, a major global staple, these patterns are also essential in determining market classes, yet the genetic and environmental control of many pigmentation patterns remains unresolved. In this study, we genetically mapped variation for several important seed pattern loci, including T, Bip, phbw, and Z, which co-segregated with candidate genes PvTTG1, PvMYC1, PvTT8, and PvTT2, respectively. Proteins encoded by these genes are predicted to work together in MYB-bHLH-WD40 (MBW) complexes, propagating flavonoid biosynthesis across the seed coat as observed in Arabidopsis. Whole-genome sequencing of 37 accessions identified mutations, including seven unique parallel mutations in T (PvTTG1) and non-synonymous SNPs in highly conserved residues in bipana (PvMYC1) and z (PvTT2). A 612 bp intron deletion in phbw (PvTT8) eliminated motifs conserved since the Papilionoideae origin and corresponded to a 20-fold reduction in transcript abundance. In multi-location field trials of seven varieties with partial seed coat pigmentation patterning, the pigmented seed coat area correlated positively with ambient temperature, with up to 11-fold increases in the pigmented area from the coolest to the warmest environments. In controlled growth chamber conditions, an increase of 4°C was sufficient to cause pigmentation on an average additional 21% of the seed coat area. Our results shed light on key steps of flavonoid biosynthesis in common bean. They will inform breeding efforts for seed coat color/patterning to improve consumer appeal in this nutritious staple crop.

5.
Sci Adv ; 10(32): eadj8223, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110795

RESUMO

There is a strong relationship between metazoan body size and extinction risk. However, the size selectivity and underlying mechanisms in foraminifera, a common marine protozoa, remain controversial. Here, we found that foraminifera exhibit size-dependent extinction selectivity, favoring larger groups (>7.4 log10 cubic micrometer) over smaller ones. Foraminifera showed significant size selectivity in the Guadalupian-Lopingian, Permian-Triassic, and Cretaceous-Paleogene extinctions where the proportion of large genera exceeded 50%. Conversely, in extinctions where the proportion of large genera was <45%, foraminifera displayed no selectivity. As most of these extinctions coincided with oceanic anoxic events, we conducted simulations to assess the effects of ocean deoxygenation on foraminifera. Our results indicate that under suboxic conditions, oxygen fails to diffuse into the cell center of large foraminifera. Consequently, we propose a hypothesis to explain size distribution-related selectivity and Lilliput effect in animals relying on diffusion for oxygen during past and future ocean deoxygenation, i.e., oxygen diffusion distance in body.


Assuntos
Extinção Biológica , Foraminíferos , Fósseis , Oxigênio/metabolismo , Animais , Tamanho Corporal
7.
Adv Sci (Weinh) ; : e2403064, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088351

RESUMO

Ischemic stroke (IS) is a leading cause of morbidity and mortality globally and triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia in the central nervous system play dual roles in neuroprotection and responding to ischemic brain damage. Here, an IS model is employed to determine the involvement of microglia in phagocytosis at excitatory synapses. Additionally, the effects of pharmacological depletion of microglia are investigated on improving neurobehavioral outcomes and mitigating brain injury. RNA sequencing of microglia reveals an increase in phagocytosis-associated pathway activity and gene expression, and C-type lectin domain family 7 member A (Clec7a) is identified as a key regulator of this process. Manipulating microglial Clec7a expression can potentially regulate microglial phagocytosis of synapses, thereby preventing synaptic loss and improving neurobehavioral outcomes after IS. It is further demonstrat that microglial Clec7a interacts with neuronal myeloid differentiation protein 2 (MD2), a key molecule mediating poststroke neurological injury, and propose the novel hypothesis that MD2 is a ligand for microglial Clec7a. These findings suggest that microglial Clec7a plays a critical role in mediating synaptic phagocytosis in a mouse model of IS, suggesting that Clec7a may be a therapeutic target for IS.

8.
Chem Biodivers ; : e202401029, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135377

RESUMO

This comprehensive analysis of the fruits of Rosa spp. (FR) evaluates their chemical components and antioxidant activity. The study quantified total flavonoids and polyphenols using aluminum trichloride colorimetric assay and Folin-Ciocalteu methods, with the fruit of Rosa. laxa Rtez. var. mollis Yü et Ku. sample exhibiting the highest concentrations of 59.21 mg/g and 81.13 mg/g, respectively. Ultra-High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-TQ-MS) assessed seven primary components, with notable levels of euscaphic acid, ursolic acid, and gallic acid. Antioxidant activities were tested using DPPH and ABTS methods, showing strong activities in samples the fruits of Rosa. persica Mickx ex Juss. and Rosa. laxa Rtez. var. kaschgarica (Rupr.) Y. L. Han.. Chemometric analyses, including similarity, cluster, principal component, and grey relational analyses, were used to explore relationships between FR varieties and their antioxidant properties. The study provides a vital basis for future FR quality assessments.

9.
Heliyon ; 10(14): e33533, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100495

RESUMO

Digitalisation and technological developments are profoundly changing the socioeconomic structure of society and people's lifestyles, which may have a significant impact on the distribution of income among different groups of people. This study conducted a quantitative investigation into the impact of the digital economy on income inequality based on the skill bias theory. First, empirical model analysis showed that digital economy has a linear dampening effect on income inequality and that there is no non-linear relationship. Then, the study analyzed the mechanisms underlying this relationship, which revealed that mining and remittances suppress income inequality in the presence of digital economy, while government spending promotes income inequality. Finally, heterogeneity analysis indicated that the suppressive impact of digital economy on income inequality in capitalist countries is stronger than in ex-communist countries. These findings will not only help to achieve social equity, but also provide a strategic direction for economic development to make the dividends of the digital economy more inclusive.

10.
Mikrochim Acta ; 191(9): 508, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102114

RESUMO

A solid-state electrochemiluminescence (ECL) sensor was fabricated by immobilizing luminol, a classical luminescent reagent, on a Zn-Co-ZIF carbon fiber-modified electrode for the rapid and sensitive detection of procymidone (PCM) in vegetable samples. The sensor was created by sequentially modifying the glassy carbon electrode with Zn-Co-ZIF carbon fiber (Zn-Co-ZIF CNFs), Pt@Au NPs, and luminol. Zn-Co-ZIF CNFs, prepared through electrospinning and high-temperature pyrolysis, possessed a large specific surface area and porosity, making it suitable as carrier and electron transfer accelerator in the system. Pt@Au NPs demonstrated excellent catalytic activity, effectively enhancing the generation of active substances. The ECL signal was significantly amplified by the combination of Zn-Co-ZIF CNFs and Pt@Au NPs, which can subsequently be diminished by procymidone. The ECL intensity decreased proportionally with the addition of procymidone, displaying a linear relationship within the concentration range 1.0 × 10-13 to 1.0 × 10-6 mol L-1 (R2 = 0.993). The sensor exhibited a detection limit of 3.3 × 10-14 mol L-1 (S/N = 3) and demonstrated outstanding reproducibility and stability, making it well-suited for the detection of procymidone in vegetable samples.


Assuntos
Cobalto , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Medições Luminescentes , Luminol , Verduras , Zinco , Luminol/química , Verduras/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Medições Luminescentes/métodos , Zinco/química , Ouro/química , Cobalto/química , Nanopartículas Metálicas/química , Platina/química , Carbono/química , Eletrodos , Substâncias Luminescentes/química , Contaminação de Alimentos/análise , Reprodutibilidade dos Testes
11.
iScience ; 27(8): 110431, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108708

RESUMO

Both concurrent chemoradiotherapy (CCRT) and induction chemotherapy (ICT) followed by CCRT are standard care of advanced nasopharyngeal carcinoma (NPC). However, tailoring personalized treatment is lacking. Herein, we established a radiogenomic clinical decision support system to classify patients into three subgroups according to their predicted disease-free survival (DFS) with CCRT and ICT response. The CCRT-preferred group was suitable for CCRT since they achieved good survival with CCRT, which could not be improved by ICT. The ICT-preferred group was suitable for ICT plus CCRT since they had poor survival with CCRT; additional ICT could afford an improved DFS. The clinical trial-preferred group was suitable for clinical trials since they exhibited poor survival regardless of receiving CCRT or ICT plus CCRT. These findings suggest that our radiogenomic clinical decision support system could identify optimal candidates for CCRT, ICT plus CCRT, and clinical trials, and may thus aid in personalized management of advanced NPC.

12.
iScience ; 27(8): 110411, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108731

RESUMO

Genetic basis underlying the biodiversity and phenotypic plasticity are fascinating questions in evolutionary biology. Such molecular diversity can be achieved at multi-omics levels. Here, we sequenced the first chromosome-level genome of assassin bug Rhynocoris fuscipes, a polyphagous generalist predator for biological control of agroecosystems. Compared to non-predatory true bugs Apolygus lucorum and Riptortus pedestris, the R. fuscipes-specific genes were enriched in diet-related genes (e.g., serine proteinase, cytochrome P450) which had higher expression level and more exons than non-diet genes. Extensive A-to-I RNA editing was identified in all three species and showed enrichment in genes associated with diet in R. fuscipes, diversifying the transcriptome. An extended analysis between five predaceous and 27 phytophagous hemipteran species revealed an expansion of diet-related genes in R. fuscipes. Our findings bridge the gap between genotype and phenotype, and also advance our understanding on genetic and epigenetic bases governing the diet shifts in ture bugs.

13.
Biosens Bioelectron ; 264: 116614, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39126904

RESUMO

The precision of previous cancer research based on tumor spheroids, especially the microgel-encapsulating tumor spheroids, was limited by the high heterogeneity in the tumor spheroid size and shape. Here, we reported a user-friendly solenoid valve-based sorter to reduce this heterogeneity. The artificial intelligence algorithm was employed to detect and segmentate the tumor spheroids in real-time for the size and shape calculation. A simple off-chip solenoid valve-based sorting actuation module was proposed to sort out target tumor spheroids with the desired size and shape. Utilizing the developed sorter, we successfully uncovered the drug response variations on cisplatin of lung tumor spheroids in the same population but with different sizes and shapes. Moreover, with this sorter, the precision of drug testing on the spheroid population level was improved to a level comparable to the precise but complex single spheroid analysis. The developed sorter also exhibits significant potential for organoid morphology and sorting for precision medicine research.

14.
Adv Sci (Weinh) ; : e2401946, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103304

RESUMO

Nociceptors are key sensory receptors that transmit warning signals to the central nervous system in response to painful stimuli. This fundamental process is emulated in an electronic device by developing a novel artificial nociceptor with an ultrathin, nonstoichiometric gallium oxide (GaOx)-silicon oxide heterostructure. A large-area 2D-GaOx film is printed on a substrate through liquid metal printing to facilitate the production of conductive filaments. This nociceptive structure exhibits a unique short-term temporal response following stimulation, enabling a facile demonstration of threshold-switching physics. The developed heterointerface 2D-GaOx film enables the fabrication of fast-switching, low-energy, and compliance-free 2D-GaOx nociceptors, as confirmed through experiments. The accumulation and extrusion of Ag in the oxide matrix are significant for inducing plastic changes in artificial biological sensors. High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that Ag clusters in the material dispersed under electrical bias and regrouped spontaneously when the bias is removed owing to interfacial energy minimization. Moreover, 2D nociceptors are stable; thus, heterointerface engineering can enable effective control of charge transfer in 2D heterostructural devices. Furthermore, the diffusive 2D-GaOx device and its Ag dynamics enable the direct emulation of biological nociceptors, marking an advancement in the hardware implementation of artificial human sensory systems.

15.
Cancer Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120597

RESUMO

Targeting multiple signaling pathways has been proposed as a strategy to overcome resistance to single-pathway inhibition in cancer therapy. A previous study in epithelial ovarian cancers identified hyperactivity of spleen tyrosine kinase (SYK) and epidermal growth factor receptor (EGFR), which mutually phosphorylate and activate each other. Given the potential for pharmacologic inhibition of both kinases with clinically available agents, this study aimed to assess the antitumor efficacy of both pharmacologic and genetic SYK and EGFR co-inhibition using a multifaceted approach to analyze the global phosphoproteome and chemoresistant ovarian cancer cell lines, patient-derived organoids, and xenograft models. Dual inhibition of SYK and EGFR in chemoresistant ovarian cancer cells elicited a highly synergistic antitumor effect. Notably, the combined inhibition strategy activated the DNA damage response, induced G1 cell cycle arrest, and promoted apoptosis. The phosphoproteomic analysis revealed that perturbation of SYK and EGFR signaling induced a significant reduction in both phosphorylated and total protein levels of cell division cycle 6 (CDC6), a crucial initiator of DNA replication. Together, this study offers preclinical evidence supporting dual inhibition of SYK and EGFR as a promising treatment for chemoresistant ovarian cancer that disrupts DNA synthesis by impairing formation of the prereplication complex. These findings warrant further clinical investigation to explore the potential of this combination therapy in overcoming drug resistance and improving patient outcomes.

16.
Clin Transl Med ; 14(8): e1778, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39083293

RESUMO

Recent advances in molecular analyses of ovarian cancer have revealed a wealth of promising tumour-specific biomarkers, including protein, DNA mutations and methylation; however, reliably detecting such alterations at satisfactorily high sensitivity and specificity through low-cost methods remains challenging, especially in early-stage diseases. Here we present PapDREAM, a new approach that enables detection of rare, ovarian-cancer-specific aberrations of DNA methylation from routinely-collected cervical Pap specimens. The PapDREAM approach employs a microfluidic platform that performs highly parallelized digital high-resolution melt to analyze locus-specific DNA methylation patterns on a molecule-by-molecule basis at or near single CpG-site resolution at a fraction (< 1/10th) of the cost of next-generation sequencing techniques. We demonstrate the feasibility of the platform by assessing intermolecular heterogeneity of DNA methylation in a panel of methylation biomarker loci using DNA derived from Pap specimens obtained from a cohort of 43 women, including 18 cases with ovarian cancer and 25 cancer-free controls. PapDREAM leverages systematic multidimensional bioinformatic analyses of locus-specific methylation heterogeneity to improve upon Pap-specimen-based detection of ovarian cancer, demonstrating a clinical sensitivity of 50% at 99% specificity in detecting ovarian cancer cases with an area under the receiver operator curve of 0.90. We then establish a logistic regression model that could be used to identify high-risk patients for subsequent clinical follow-up and monitoring. The results of this study support the utility of PapDREAM as a simple, low-cost screening method with the potential to integrate with existing clinical workflows for early detection of ovarian cancer. KEY POINTS: We present a microfluidic platform for detection and analysis of rare, heterogeneously methylated DNA within Pap specimens towards detection of ovarian cancer. The platform achieves high sensitivity (fractions <0.00005%) at a suitably low cost (∼$25) for routine screening applications. Furthermore, it provides molecule-by-molecule quantitative analysis to facilitate further study on the effect of heterogeneous methylation on cancer development.


Assuntos
Metilação de DNA , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/diagnóstico , Metilação de DNA/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Pessoa de Meia-Idade , DNA/genética , DNA/análise , Sensibilidade e Especificidade , Adulto , Teste de Papanicolaou/métodos , Teste de Papanicolaou/estatística & dados numéricos
17.
Environ Sci Technol ; 58(29): 13145-13156, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980824

RESUMO

Electrode scaling poses a critical barrier to the adoption of electrochemical processes in wastewater treatment, primarily due to electrode inactivation and increased internal reactor resistance. We introduce an antiscaling strategy using tip-enhanced electric fields to redirect scale-forming compounds (e.g., Mg(OH)2 and CaCO3) from the electrode-electrolyte interface to the bulk solution. Our study utilized Cu nanowires (Cu NW) with high-curvature nanostructures as the cathode, in contrast to Cu nanoparticles (Cu NP), Cu foil (CF), and Cu mesh (CM), to evaluate the electrochemical nitrate reduction reaction (NO3RR) performance in hard water conditions. The Cu NW/CF cathode demonstrated superior NO3RR efficiency, with an apparent rate constant (Kapp) of 1.04 h-1, significantly outperforming control electrodes under identical conditions (Kapp < 0.051 h-1). Through experimental and theoretical analysis, including COMSOL simulations, we show that the high-curvature design of Cu NW induced localized electric field enhancements, propelling OH- ions away from the electrode surface into the bulk solution, thus mitigating scale formation on the cathode. Testing with real nitrate-contaminated wastewater confirms that the Cu NW/CF cathode maintained excellent denitrification efficiency over a 60-day period. This study offers a promising perspective on preventing electrode scaling in electrochemical wastewater treatment, paving the way for more efficient and sustainable practices.


Assuntos
Eletrodos , Águas Residuárias , Águas Residuárias/química , Cobre/química , Purificação da Água/métodos , Nitratos/química
18.
Chronic Dis Transl Med ; 10(3): 167-194, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39027195

RESUMO

Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.

19.
New Phytol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044442

RESUMO

Plants delicately regulate endogenous auxin levels through the coordination of transport, biosynthesis, and inactivation, which is crucial for growth and development. While it is well-established that the actin cytoskeleton can regulate auxin levels by affecting polar transport, its potential role in auxin biosynthesis has remained largely unexplored. Using LC-MS/MS-based methods combined with fluorescent auxin marker detection, we observed a significant increase in root auxin levels upon deletion of the actin bundling proteins AtFIM4 and AtFIM5. Fluorescent observation, immunoblotting analysis, and biochemical approaches revealed that AtFIM4 and AtFIM5 affect the protein abundance of the key auxin synthesis enzyme YUC8 in roots. AtFIM4 and AtFIM5 regulate the auxin synthesis enzyme YUC8 at the protein level, with its degradation mediated by the 26S proteasome. This regulation modulates auxin synthesis and endogenous auxin levels in roots, consequently impacting root development. Based on these findings, we propose a molecular pathway centered on the 'actin cytoskeleton-26S proteasome-YUC8-auxin' axis that controls auxin levels. Our findings shed light on a new pathway through which plants regulate auxin synthesis. Moreover, this study illuminates a newfound role of the actin cytoskeleton in regulating plant growth and development, particularly through its involvement in maintaining protein homeostasis via the 26S proteasome.

20.
Front Pharmacol ; 15: 1382120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070796

RESUMO

Background: Breast cancer (BC) is one of the most common cancers worldwide. The inevitability of drug resistance to initial anti-HER-2 therapy necessitates the emergence of second-line anti-HER-2 drugs which exhibit a promising outlook. Consequently, it is imperative to appraise their efficacy through network meta-analysis and ascertain their comparative cost-effectiveness. Methods: The data used in our analysis were acquired from patients enrolled in the EMILIA, DESTINY-Breast03, and PHOEBE phase III randomized clinical trials. A partitioned survival model was used for patients diagnosed with HER-2-positive metastatic Breast cancer. The model was crafted with a time horizon of 10 years, operating on a 21-day cycle and incorporating a 5% discount rate for both costs and outcomes. The willingness-to-pay threshold was set at $36,058.06 per quality-adjusted life year (QALY). The impact of parameter uncertainty on the findings was assessed using a one-way deterministic sensitivity analysis and probability sensitivity analysis. Findings: Within the model encompassing 1782 patients, the utilization of pyrotinib plus capecitabine (PC) treatment yielded an additional 0.70 QALY in comparison to T-DM1, resulting in an incremental cost-effectiveness ratio (ICER) of $31,121.53 per QALY gained. Similarly, the administration of T-DXd treatment led to an additional 0.80 QALY compared to T-DM1, resulting in an ICER of $153,950.19 per QALY gained. The PC strategies are considered more cost-effective than T-DXd when the WTP threshold is set at $36,058.06 per QALY. However, this method is not cost effective for T-DXd. The probability of the PC strategies being cost-effective was 62%, whereas the probability of T-DXd was 0% when compared to T-DM1. Conclusion: PC is a cost-effective therapy for patients afflicted with HER-2-positive metastatic BC compared to T-DM1 from the perspective of China at a WTP threshold of $36,058.06 per QALY. Nevertheless, T-DXd is not as cost-effective as T-DM1, considering its current medication pricing. Therefore, reducing the cost of T-DXd could improve its overall cost-effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...