Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.005
Filtrar
1.
J Clin Invest ; 134(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225090

RESUMO

Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is approved for obesity treatment, but the specific neuronal sites that contribute to its therapeutic effects remain elusive. Here, we show that GLP-1 receptor-positive (GLP-1R-positive) neurons in the lateral septum (LSGLP-1R) play a critical role in mediating the anorectic and weight-loss effects of liraglutide. LSGLP-1R neurons were robustly activated by liraglutide, and chemogenetic activation of these neurons dramatically suppressed feeding. Targeted knockdown of GLP-1 receptors within the LS, but not in the hypothalamus, substantially attenuated liraglutide's ability to inhibit feeding and lower body weight. The activity of LSGLP-1R neurons rapidly decreased during naturalistic feeding episodes, while synaptic inactivation of LSGLP-1R neurons diminished the anorexic effects triggered by liraglutide. Together, these findings offer critical insights into the functional role of LSGLP-1R neurons in the physiological regulation of energy homeostasis and delineate their instrumental role in mediating the pharmacological efficacy of liraglutide.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Liraglutida , Neurônios , Liraglutida/farmacologia , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Núcleos Septais/metabolismo , Núcleos Septais/efeitos dos fármacos , Masculino , Redução de Peso/efeitos dos fármacos , Depressores do Apetite/farmacologia
2.
Med Phys ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207288

RESUMO

BACKGROUND: The incidence of adenocarcinoma of the esophagogastric junction (AEJ) is increasing, and with poor prognosis. Lymph node status (LNs) is particularly important for planning treatment and evaluating the prognosis of patients with AEJ. However, the use of radiomic based on enhanced computed tomography (CT) to predict the preoperative lymph node metastasis (PLNM) status of the AEJ has yet to be reported. PURPOSE: We sought to investigate the value of radiomic features based on enhanced CT in the accurate prediction of PLNM in patients with AEJ. METHODS: Clinical features and enhanced CT data of 235 patients with AEJ from October 2017 to May 2023 were retrospectively analyzed. The data were randomly assigned to the training cohort (n = 164) or the external testing cohort (n = 71) at a ratio of 7:3. A CT-report model, clinical model, radiomic model, and radiomic-clinical combined model were developed to predict PLNM in patients with AEJ. Univariate and multivariate logistic regression were used to screen for independent clinical risk factors. Least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomic features. Finally, a nomogram for the preoperative prediction of PLNM in AEJ was constructed by combining Radiomics-score and clinical risk factors. The models were evaluated by area under the receiver operating characteristic curve (AUC-ROC), calibration curve, and decision curve analyses. RESULTS: A total of 181 patients (181/235, 77.02%) had LNM. In the testing cohort, the AUC of the radiomic-clinical model was 0.863 [95% confidence interval (CI) = 0.738-0.957], and the radiomic model (0.816; 95% CI = 0.681-0.929), clinical model (0.792; 95% CI = 0.677-0.888), and CT-report model (0.755; 95% CI = 0.647-0.840). CONCLUSION: The radiomic-clinical model is a feasible method for predicting PLNM in patients with AEJ, helping to guide clinical decision-making and personalized treatment planning.

3.
J Environ Manage ; 368: 122090, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126848

RESUMO

The saline wastewater produced in industrial activities and seawater use would flow into wastewater treatment plants and affect the characteristic of extracellular polymeric substance (EPS) of activated sludge, which could potentially impact the removal of antibiotics via adsorption. Nonetheless, the effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration and the underlying mechanism remain largely unknown. In this study, the effect of salinity on the adsorption removal of a typical antibiotic, i.e., trimethoprim (TMP) at trace concentration (25.0 µg/L) was evaluated. The results showed the content of EPS was decreased significantly from 56.36 to 21.70 mg/g VSS when the salinity was increased from 0 to 10 g/L. Protein fractions occupied the predominant component of EPS, whose concentration was decreased from 38.17 to 12.83 mg/g VSS. The equilibrium adsorption capacity of activated sludge for TMP was decreased by 49.70% (from 4.97 to 2.50 µg/g VSS). The fluorescence quenching results indicated the fluorescence intensity of tryptophan-like substances was decreased by 30% and the adsorption sites of EPS were decreased from 0.51 to 0.21 when the salinity was increased. The infrared spectrum and XPS results showed that the nitrogen-containing groups from protein were decreased significantly. The circular dichroic analysis showed α helix structure of protein in EPS was decreased with the increase of salinity, which was responsible for the decrease of adsorption capacity for TMP.

4.
J Food Sci ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138629

RESUMO

Tomato is sweet and sour with high nutritional value, and soluble solids content (SSC) is an important indicator of tomato flavor. Due to the different mechanisms of nitrogen uptake and assimilation in plants, exogenous supply of different forms of nitrogen will have different effects on the growth, development, and physiological metabolic processes of tomato, thus affecting the tomato flavor. In this paper, hyperspectral imaging (HSI) technique combined with neural network prediction model was used to predict SSC of tomato under different nitrogen treatments. Competitive adaptive reweighed sampling (CARS) and iterative retained information variable (IRIV) were used to extract the feature wavelengths. Based on the characteristic wavelength, the prediction models of tomato SSC are established by custom convolutional neural network (CNN) model that was constructed and optimized. The results showed that the SSC of tomato was negatively correlated with nitrogen fertilizer concentration. For tomatoes treated with different nitrogen concentrations, the residual predictive deviation (RPD) of CARS-CNN and IRIV-parallel convolutional neural networks (PCNN) reached 1.64 and 1.66, both more than 1.6, indicating good model prediction. This study provides technical support for future online nondestructive testing of tomato quality. PRACTICAL APPLICATION: The CARS-CNN and IRIV-PCNN were the best data processing model. Four customized convolutional neural networks were used for predictive modeling. The CNN model provides more accurate results than conventional methods.

6.
Biomol Biomed ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39132968

RESUMO

Hypertrophic scar (HS) is a fibrous proliferative disorder that occurs in the dermis after skin injury. Studies have confirmed that Botulinum toxin type A (BTA) is effective in scar prevention and treatment. However, the specific mechanism remains uncertain. Hypertrophic scar fibroblasts (HSFs) and normal skin fibroblasts (NSFs) from the skin tissues of HS patients were isolated and cultured. Western blot analysis was conducted to measure the expression of JAK2/STAT3 pathway-related proteins. HSFs were treated with the JAK2 inhibitor (AG490) or agonist (C-A1). The CCK-8 assay, EdU staining, scratch-wound assay and transwell assay were used to examine the biological properties of HSFs. Western blot, immunofluorescence, and Sirius red staining were used to assess the fibrosis of HSFs. Additionally, a mouse full-thickness wound model was constructed to investigate the role of BTA in wound healing. The results showed that the JAK2 and STAT3 phosphorylation levels were markedly increased in HS tissues and HSFs. AG490 treatment reduced cell viability, proliferation and migration capacity, and inhibited the fibrosis of HSFs, whereas C-A1 treatment had the opposite effect. BTA treatment inhibited the JAK2/STAT3 pathway. BTA reduced cell viability, proliferation and migration ability, and inhibited the fibrosis of HSFs, while C-A1 intervention weakened the impact of BTA. Meanwhile, BTA promoted wound healing and reduced collagen deposition in vivo. In conclusion, BTA inhibited the JAK2/STAT3 pathway, which in turn hindered the proliferation, migration and fibrosis of HSFs, and promoted wound healing in mice.

7.
Food Chem ; 461: 140817, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39146682

RESUMO

This study examined multi-scale structural alterations of maize starches varying in amylose content during pasting and gelation, using Rapid Visco Analyser (RVA). At 50 °C, starch granules maintained their morphology with low viscosity. As the temperature increased to 95 °C, helical and crystal structures were destroyed, leading to granule swelling, distortion and porosity, as identified by Wide Angle X-ray Scattering and Fourier Transforms Infrared measurements at 90% moisture. This resulted in increased viscosity and the formation of a loose gel network structure. Subsequently, maintaining the temperature at 95 °C caused a decrease in viscosity as most granules disappeared, forming a reorganized flaky gel structure with larger pores. As the temperature decreased, gel porosity reduced. In high amylose content starch, the viscosity remained low and granules were partially gelatinized since the heating temperature was below the gelatinization temperature. This study is the first to detail starch multilevel structural dynamics during RVA gelatinization.

8.
iScience ; 27(8): 110328, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39184434

RESUMO

Plasmas under atmospheric pressure offer a high-temperature environment for material synthesis, but electrode ablation compromises purity. Here, we introduce an atmospheric-pressure microwave plasma (AMP) operated without electrodes to overcome the existing limitations in pure material synthesis. The distribution of the electrostatic field intensity inside a waveguide during AMP excitation was examined via electrostatic field simulations. The lateral and radial gas temperature distributions were also studied using optical emission spectroscopy. The AMP exhibited a uniform ultrahigh temperature (9,000 K), a large volume (102-104 cm3), and a response time on the millisecond level. AMP efficiently synthesized silicon nanoparticles, graphene, and graphene@Si-Fe core-shell nanoparticles within tens of milliseconds, ensuring purity and size control. We propose the "heat impulse" metric for evaluating the plasma characteristics (n a, T g, and t) in material synthesis, extended to other high-temperature plasmas. AMP is compact, cost-effective, and easy to assemble, promising for eco-friendly mass production of pure materials.

10.
Org Lett ; 26(34): 7161-7165, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39158186

RESUMO

Herein we present an efficient chiral phosphoric-acid-catalyzed atropoenantioselective asymmetric reductive amination of biaryl dialdehydes. The process involves desymmetrization and the following kinetic resolution, with a wide range of axially chiral aryl aldehydes obtained with high optical purities.

11.
BMC Med ; 22(1): 342, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183296

RESUMO

BACKGROUND: Early detection and treatment are effective methods for the management of oral squamous cell carcinoma (OSCC), which can be facilitated by the detection of tumor-specific OSCC biomarkers. The epidermal growth factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) are important therapeutic targets for OSCC. Multispectral fluorescence molecular imaging (FMI) can facilitate the detection of tumor multitarget expression with high sensitivity and safety. Hence, we developed Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes, in combination with multispectral FMI, to sensitively and noninvasively identify EGFR and PD-L1 expression for the detection and comprehensive treatment of OSCC. METHODS: The expression of EGFR and PD-L1 was analyzed using bioinformatics data sources and specimens. Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes were developed and tested on preclinical OSCC cell line and orthotopic OSCC mouse model, fresh OSCC patients' biopsied samples, and further clinical mouthwash trials were conducted in OSCC patients. RESULTS: EGFR and PD-L1 were specifically expressed in human OSCC cell lines and tumor xenografts. Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes can specifically target to the tumor sites in an in situ human OSCC mouse model with good safety. The detection sensitivity and specificity of Nimotuzumab-ICG in patients were 96.4% and 100%, and 95.2% and 88.9% for Atezolizumab-Cy5.5. CONCLUSIONS: EGFR and PD-L1 are highly expressed in OSCC, the combination of which is important for a precise prognosis of OSCC. EGFR and PD-L1 expression can be sensitively detected using the newly synthesized multispectral fluorescence imaging probes Nimotuzumab-ICG and Atezolizumab-Cy5.5, which can facilitate the sensitive and specific detection of OSCC and improve treatment outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2100045738. Registered 23 April 2021, https://www.chictr.org.cn/bin/project/edit?pid=125220.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Carcinoma de Células Escamosas , Receptores ErbB , Neoplasias Bucais , Imagem Óptica , Humanos , Antígeno B7-H1/metabolismo , Animais , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/diagnóstico , Imagem Óptica/métodos , Anticorpos Monoclonais Humanizados/uso terapêutico , Camundongos , Feminino , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/diagnóstico , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Imagem Molecular/métodos , Biomarcadores Tumorais/metabolismo
12.
Neuropharmacology ; : 110119, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197819

RESUMO

Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.

13.
Animals (Basel) ; 14(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39199918

RESUMO

A new Cyrtodactylus species, C. laevissp. nov., from the dry-hot valleys near the Yarlung Zangbo River in Re Village, Jindong Countryside, Lang County, Linzhi City, Xizang Autonomous Region, China, is described herein based upon the integrative taxonomic results combining molecular phylogenetic systematics and morphological characteristic comparisons. Our molecular phylogeny was inferred by combining three mitochondrial gene fragments (16S/CO1/ND2), and it indicated a distinct differentiation between the new species and C. tibetanus species complex, with obvious genetic distances (16S 9.9-11.8%/CO1 16.5-18.2%/ND2 16.6-18.5%) detected, supporting its validity. Morphologically, the new species can be easily distinguished from its congers by the following characters: (1) medium size (SVL 48.58-50.92 mm), (2) tubercles on dorsum sparse, (3) tail segments absent and tubercles on tails absent, (4) supralabials 10-12 and infralabials 8-10, (5) interorbital scales between anterior corners of the eyes 28-32, (6) scale rows at midbody 96-98, (7) ventral scales between mental and cloacal slit 145-153, (8) ventral scale rows 41-45, and (9) 4 to 5 white-yellow transverse bands with brown dots and black merges between the nape and sacrum. The description of C. laevissp. nov. increased the total species number of C. tibetanus group to three, and the total Cyrtodactylus species number in Xizang to six and in China to eleven. The new species is currently only known from the type locality with its extremely small populations and needs future surveys to reveal its distribution range, population status, natural history, and mechanisms so that the new species can coexist with Altiphylax medogense.

14.
CNS Neurosci Ther ; 30(9): e70012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215404

RESUMO

AIMS: Poly (ADP-ribose) polymerase (PARP) has been extensively investigated in human cancers. Recent studies verified that current available PARP inhibitors (Olaparib or Veliparib) provided clinical palliation of clinical patients suffering from paclitaxel-induced neuropathic pain (PINP). However, the underlying mechanism of PARP overactivation in the development of PINP remains to be investigated. METHODS AND RESULTS: We reported induction of DNA oxidative damage, PARP-1 overactivation, and subsequent nicotinamide adenine dinucleotide (NAD+) depletion as crucial events in the pathogenesis of PINP. Therefore, we developed an Olaparib PROTAC to achieve the efficient degradation of PARP. Continuous intrathecal injection of Olaparib PROTAC protected against PINP by inhibiting the activity of PARP-1 in rats. PARP-1, but not PARP-2, was shown to be a crucial enzyme in the development of PINP. Specific inhibition of PARP-1 enhanced mitochondrial redox metabolism partly by upregulating the expression and deacetylase activity of sirtuin-3 (SIRT3) in the dorsal root ganglions and spinal cord in the PINP rats. Moreover, an increase in the NAD+ level was found to be a crucial mechanism by which PARP-1 inhibition enhanced SIRT3 activity. CONCLUSION: The findings provide a novel insight into the mechanism of DNA oxidative damage in the development of PINP and implicate PARP-1 as a possible therapeutic target for clinical PINP treatment.


Assuntos
Dano ao DNA , Mitocôndrias , Neuralgia , Paclitaxel , Poli(ADP-Ribose) Polimerase-1 , Ratos Sprague-Dawley , Animais , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Masculino , Paclitaxel/toxicidade , Dano ao DNA/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piperazinas/farmacologia , Ftalazinas/farmacologia , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Modelos Animais de Doenças
15.
ACS Omega ; 9(31): 34081-34088, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39130544

RESUMO

The synthesis of zeolites through more efficient, environmentally friendly, and cost-effective methods was deemed significant in both industrial applications and academic fields. Conventional hydrothermal synthesis strategies have encountered difficulties in producing pure silica MFI zeolite (silicalite-1) under amine-free conditions. This was primarily attributed to the competitive growth of quartz, keatite, or magadiite during the crystallization process. In this work, it was found that the lack of nucleation ability was an important reason for the poor crystallization stability of the methanol solution. Well-crystallized silicalite-1 zeolites with uniform particle sizes were achieved through the cooperative guidance of methanol and seed crystals. Large-scale experiments with silicalite-1 zeolite demonstrated good reproducibility. Combined with the TG-IR and N2 adsorption-desorption results, it was observed that, when an extremely small amount of seed (0.97 wt %) was introduced, methanol could play a role as a crystallization promoter in the hydrothermal synthesis system. Furthermore, a lower alkaline-to-silica ratio and water-to-silica ratio were conducive to the progression of the crystallization process. In summary, this work presented a hydrothermal synthesis strategy for the synthesis of silicalite-1 zeolite in a methanol solution without the need for a large amount of seeds and provided an effective pathway for the low-cost, large-scale production of silicalite-1 zeolite.

16.
Proc Natl Acad Sci U S A ; 121(33): e2404883121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102535

RESUMO

Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Ubiquitinação , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Estabilidade Proteica/efeitos da radiação , Luz , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/genética
17.
J Chromatogr A ; 1732: 465221, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106662

RESUMO

Liquid-phase microextraction (LPME) possesses a high potential to isolate organic substances from different sample matrices. In this work, LPME was applied for the first time to investigate the biodistribution of diphenidol in different biofluids, organs, and brain regions using a fatal poisoning case. Since the LPME of diphenidol hasn't been reported, the effect of supported liquid membrane (SLM), acceptor and donor phases, and extraction time on LPME performance was investigated first. The solvents of 2-nonanone and 2-nitrophenyl octyl ether (NPOE) were found to be stable and efficient SLMs for LPME of diphenidol from biofluids and tissue samples, respectively. At steady state, the LPME recoveries for different sample matrices were in the range of 87 %-91 %. Due to the clean-up capability of LPME and the relatively high concentration of diphenidol in the fatal poisoning case, the proposed LPME systems were validated with related sample matrices using HPLC-UV for the determination. The methods displayed good linearity (R² ≥ 0.9943), and the limits of detection were 0.30 mg L-1, 0.28 mg L-1, and 2.7 µg g-1 for blood, urine, and liver samples, respectively. Meanwhile, the precision (≤13%), accuracy (90-110%), and matrices effect (±15%) were satisfactory at low, medium, and high concentrations. In addition, the stability, carryover, and dilution integrity met the requirements of ASB Standard 036. Finally, the proposed method was successfully applied to evaluate the biodistribution of diphenidol in five different biofluids, five organs, and six brain regions from a fatal poisoning case. Generally, the distribution of diphenidol in biofluids was lower than that in the organs and brain regions, and the highest concentration of diphenidol was observed in the liver, which is very important for the selection of inspection samples in forensic toxicological analysis. Therefore, LPME was proved to be a powerful tool for the investigation of biodistribution and postmortem redistribution in the fields of forensics.


Assuntos
Microextração em Fase Líquida , Piperidinas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Microextração em Fase Líquida/métodos , Piperidinas/sangue , Piperidinas/farmacocinética , Piperidinas/intoxicação , Reprodutibilidade dos Testes , Distribuição Tecidual
18.
J Colloid Interface Sci ; 678(Pt A): 141-151, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39182388

RESUMO

Luminescent materials with engineered optical properties play an important role in anti-counterfeiting and information security technology. However, conventional luminescent coding is limited by fluorescence color or intensity, and high-level multi-dimensional luminescent encryption technology remains a critically challenging goal in different scenarios. To improve the encoding capacity, we present an optical multiplexing concept by synchronously manipulating the emission color and decay lifetimes of room-temperature phosphorescence materials at molecular level. Herein, we devise a family of zero-dimensional (0D) hybrid metal halides by combining organic phosphonium cations and metal halide tetrahedral anions as independent luminescent centers, which display blue phosphorescence and green persistent afterglow with the highest quantum yields of 39.9 % and 57.3 %, respectively. Significantly, the luminescence lifetime can be fine-tuned in the range of 0.0968-0.5046 µs and 33.46-125.61 ms as temporary time coding through precisely controlling the heavy atomic effect and inter-molecular interactions. As a consequence, synchronous blue phosphorescence and green afterglow are integrated into one 0D halide platform with adjustable emission lifetime acting as color- and time-resolved dual RTP materials, which realize the multiple applications in high-level anti-counterfeiting and information storage. The color-lifetime-dual-resolved encoding ability greatly broadens the scope of luminescent halide materials for optical multiplexing applications.

19.
J Med Virol ; 96(8): e29882, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39185672

RESUMO

Establishing reliable noninvasive tools to precisely diagnose clinically significant liver fibrosis (SF, ≥F2) remains an unmet need. We aimed to build a combined radiomics-clinic (CoRC) model for triaging SF and explore the additive value of the CoRC model to transient elastography-based liver stiffness measurement (FibroScan, TE-LSM). This retrospective study recruited 595 patients with biopsy-proven liver fibrosis at two centers between January 2015 and December 2021. At Center 1, the patients before December 2018 were randomly split into training (276) and internal test (118) sets, the remaining were time-independent as a temporal test set (96). Another data set (105) from Center 2 was collected for external testing. Radiomics scores were built with selected features from Deep learning-based (ResUNet) automated whole liver segmentations on MRI (T2FS and delayed enhanced-T1WI). The CoRC model incorporated radiomics scores and relevant clinical variables with logistic regression, comparing routine approaches. Diagnostic performance was evaluated by the area under the receiver operating characteristic curve (AUC). The additive value of the CoRC model to TE-LSM was investigated, considering necroinflammation. The CoRC model achieved AUCs of 0.79 (0.70, 0.86), 0.82 (0.73, 0.89), and 0.81 (0.72-0.91), outperformed FIB-4, APRI (all p < 0.05) in the internal, temporal, and external test sets and maintained the discriminatory power in G0-1 subgroups (AUCs range, 0.85-0.86; all p < 0.05). The AUCs of joint CoRC-LSM model were 0.86 (0.79-0.94), and 0.81 (0.72-0.90) in the internal and temporal sets (p = 0.01). The CoRC model was useful for triaging SF, and may add value to TE-LSM.


Assuntos
Técnicas de Imagem por Elasticidade , Cirrose Hepática , Fígado , Imageamento por Ressonância Magnética , Humanos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Adulto , Técnicas de Imagem por Elasticidade/métodos , Fígado/patologia , Fígado/diagnóstico por imagem , Curva ROC , Aprendizado Profundo , Idoso , Triagem/métodos
20.
Mol Cancer ; 23(1): 181, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217404

RESUMO

Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.


Assuntos
Senescência Celular , Progressão da Doença , Neoplasias , Fenótipo Secretor Associado à Senescência , Microambiente Tumoral , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...